Publications

Results 101–125 of 158
Skip to search filters

Small signal stability analysis and distributed control with communications uncertainty

2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016

Byrne, Raymond H.; Trudnowski, D.J.; Neely, J.C.; Schoenwald, David A.; Wilson, David G.; Rashkin, Lee

With increasing renewable penetrations and advancements in power electronics associated with smart grid technologies, distributed control of the power grid is quickly becoming a necessity. Once communications are introduced into a control system, the impacts of latency and unreliable communications quickly become a priority. Vector Lyapunov techniques are well suited for the analysis of control systems with structured perturbations. These perturbations can be employed to model uncertainty in communications as well as parameter uncertainty. In this paper, we present results for small signal stability of a simplified two area power system model for several scenarios: bandwidth limited local communications and tie line uncertainty; local communications and bandwidth limited global communications combined with tie line uncertainty; and uncertainty in global communications. These results are intended to be a starting point for the analysis of the impact of communications uncertainty on the stability of power systems.

More Details

Determination of Duty Cycle for Energy Storage Systems in a PV Smoothing Application

Schoenwald, David A.; Ellison, James

This report supplements the document, "Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems," issued in a revised version in April 2016 (see [4]), which will include the photovoltaic (PV) smoothing application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a PV smoothing application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol. ACKNOWLEDGEMENTS The authors gratefully acknowledge the support of Dr. Imre Gyuk, program manager for the DOE Energy Storage Systems Program. The authors would also like to express their appreciation to all the stakeholders who participated as members of the PV Smoothing Subgroup. Without their thoughtful input and recommendations, the definitions, metrics, and duty cycle provided in this report would not have been possible. A complete listing of members of the PV Smoothing Subgroup appears in the first chapter of this report. Special recognition should go to the staffs at Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL) in collaborating on this effort. In particular, Mr. David Conover and Dr. Vish Viswanathan of PNNL and Dr. Summer Ferreira of SNL were especially helpful in their suggestions for the determination of a duty cycle for the PV Smoothing application.

More Details

Scoping Study on Research and Development Priorities for Distribution-System Phasor Measurement Units

Schoenwald, David A.; Schoenwald, David A.; Eto, Joseph H.; Eto, Joseph H.; Stewart, Emma M.; Stewart, Emma M.; Kirkham, Harold K.; Kirkham, Harold K.; Tuffner, Francis T.; Tuffner, Francis T.; Smith, Travis S.; Buckner, Mark B.

This report addresses the potential use of phasor measurement units (PMUs) within electricity distribution systems, and was written to assess whether or not PMUs could provide significant benefit, at the national level. We analyze examples of present and emerging distribution-system issues related to reliability, integration of distributed energy resources, and the changing electrical characteristics of load. We find that PMUs offer important and irreplaceable advantages over present approaches. However, we also find that additional research and development for standards, testing and calibration, demonstration projects, and information sharing is needed to help industry capture these benefits.

More Details

Determination of Duty Cycle for Energy Storage Systems in a Renewables (Solar) Firming Application

Schoenwald, David A.; Ellison, James

This report supplements the document, “Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems,” issued in a revised version in April 2016, which will include the renewables (solar) firming application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a renewables (solar) firming application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol.

More Details

Optimal locations for energy storage damping systems in the Western North American interconnect

IEEE Power and Energy Society General Meeting

Byrne, Raymond H.; Trudnowski, D.J.; Neely, J.C.; Elliott, Ryan T.; Schoenwald, David A.; Donnelly, M.K.

Electromechanical oscillations often limit transmission capacity in the western North American Power System (termed the wNAPS). Recent research and development has focused on employing large-scale damping controls via wide-area feedback. Such an approach is made possible by the recent installation of a wide-area real-time measurement system based upon Phasor Measurement Unit (PMU) technology. One potential large-scale damping approach is based on energy storage devices. Such an approach has considerable promise for damping oscillations. This paper considers the placement of such devices within the wNAPS system. We explore combining energy storage devices with HVDC modulation of the Pacific DC Intertie (PDCI). We include eigenanalysis of a reduced-order wNAPS system, detailed analysis of a basic two-area dynamic system, and full-order transient simulations. We conclude that the optimal energy storage location is in the area with the lower inertia.

More Details

Performance assessment of the PNM Prosperity electricity storage project

Ellison, James; Roberson, Dakota R.; Schoenwald, David A.

The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

More Details
Results 101–125 of 158
Results 101–125 of 158