TechConnect Innovation Challenge and Defense TechConnect Challenge - Submission Form
Abstract not provided.
Abstract not provided.
Abstract not provided.
ASME 2018 Dynamic Systems and Control Conference, DSCC 2018
Inter-area oscillation is one of the main concerns in power system small signal stability. It involves wide area in power system, therefore identifying the causes and damping these oscillations are challenging. Undamped inter-area oscillations may cause severe problems in power systems including large-scale blackouts. Designing a proper controller for power systems also is a challenging problem due to the complexity of the system. Moreover, for a large-scale system it is impractical to collect all system information in one location to design a centralized controller. Decentralized controller will be more desirable for large scale systems to minimize the inter area oscillations by using local information. In this paper, we consider a large-scale power system consisting of three areas. After decomposing the system into three subsystems, each subsystem is modeled with a lower order system. Finally, a decentralized controller is designed for each subsystem to maintain the large-scale system frequency at the desired level even in the presence of disturbances.
Abstract not provided.
2017 North American Power Symposium, NAPS 2017
Power systems can be stabilized using distributed control methods with wide-area measurements for feedback. However, wide-area measurements are subject to time delays in communication, which can have undesirable effects on system performance. We present time-domain analysis results regarding the small-signal stability of a two-area power system with damping control subjected to asymmetric time delays in the feedback measurements. We consider two wide-area damping control implementations. The first is implemented with a High Voltage DC transmission line, and the second uses distributed Energy Storage devices. Numerical results show regions of stability for the closed-loop systems that depend on the time delays and the choice of the control gain. These results show that increasing the control gains cause the systems to be less robust to time delays, and, under certain conditions, increasing the time delays can have a stabilizing effect. Furthermore, we provide analysis of time simulations and eigenvalue plots that verify these stability regions and show how stability is affected as time delays increase.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2017 IEEE Manchester PowerTech, Powertech 2017
This paper describes the initial open-loop operation of a prototype control system aimed at mitigating inter-area oscillations through active DC power modulation. The control system uses real-time synchrophasor feedback to construct a commanded power signal added to the scheduled power on the Pacific DC Intertie (PDCI) within the western North American power system (wNAPS). The control strategy is based upon nearly a decade of simulation, linear analysis, and actual system tests. The control system must add damping to all modes which are controllable and 'do no harm' to the AC grid. Tests were conducted in which the damping controller injected live probing signals into the PDCI controls to change the power flow on the PDCI by up to ±125 MW. While the probing tests are taking place, the damping controller recorded what it would have done if it were providing active damping. The tests demonstrate that the dynamic response of the DC system is highly desirable with a response time of 11 ms which is well within the desired range. The tests also verify that the overall transfer functions are consistent with past studies and tests. Finally, the tests show that the prototype controller behaves as expected and will improve damping in closed-loop operation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IFAC-PapersOnLine
This paper describes the design strategy and testing results of a control system to improve damping of inter-area oscillations in the western North American Power System (wNAPS) in order to maintain dynamic stability of the grid. Extensive simulation studies and actual test results on the wNAPS demonstrate significant improvements in damping of inter-area oscillations of most concern without reducing damping of peripheral oscillations. The design strategy of the control system features three novel attributes: (1) The feedback law for the control system is constructed using real-time measurements acquired from Phasor Measurement Units (PMUs) located throughout the power grid. (2) Control actuation is delivered by the modulation of real power flow through a High Voltage Direct Current (HVDC) transmission line. (3) A supervisory system, integrated into the control system is in charge of determining damping effectiveness, maintaining failsafe operation, and ensuring that no harm is done to the grid.
IEEE Power & Energy Society General Meeting (Online)
Abstract not provided.
IEEE Power & Energy Society General Meeting (Online)
Abstract not provided.
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.
Power Systems Conference (NPSC), 2016 National
Abstract not provided.
IEEE Power and Energy Society General Meeting
This paper describes a control scheme to mitigate inter-area oscillations through active damping. The control system uses real-time phasor measurement unit (PMU) feedback to construct a commanded power signal to modulate the flow of real power over the Pacific DC Intertie (PDCI) located in the western North American Power System (wNAPS). A hardware prototype was constructed to implement the control scheme. To ensure safe and reliable performance, the project integrates a supervisory system to ensure the controller is operating as expected at all times. A suite of supervisory functions are implemented across three hardware platforms. If any controller mal-function is detected, the supervisory system promptly disables the controller through a bumpless transfer method. This paper presents a detailed description of the control scheme, simulation results, the bumpless transfer method, and a redundancy and diversity method in the selection of PMU signals for feedback. This paper also describes in detail the supervisory system implemented to ensure safe and reliable damping performance of the real-time wide area damping controller.
Abstract not provided.