Nanoporous Metal Films Formed with Aqueous Organic Templates
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
Nanofilms of Pd were grown using an electrochemical form of atomic layer deposition (E-ALD) on 100 nm evaporated Au films on glass. Multiple cycles of surface-limited redox replacement (SLRR) were used to grow deposits. Each SLRR involved the underpotential deposition (UPD) of a Cu atomic layer, followed by open circuit replacement via redox exchange with tetrachloropalladate, forming a Pd atomic layer: one E-ALD deposition cycle. That cycle was repeated in order to grow deposits of a desired thickness. 5 cycles of Pd deposition were performed on the Au on glass substrates, resulting in the formation of 2.5 monolayers of Pd. Those Pd films were then modified with varying coverages of Pt, also formed using SLRR. The amount of Pt was controlled by changing the potential for Cu UPD, and by increasing the number of Pt deposition cycles. Hydrogen absorption was studied using coulometry and cyclic voltammetry in 0.1 M H2SO4 as a function of Pt coverage. The presence of even a small fraction of a Pt monolayer dramatically increased the rate of hydrogen desorption. However, this did not reduce the films' hydrogen storage capacity. The increase in desorption rate in the presence of Pt was over an order of magnitude.
This initial work attempted to determine the feasibility of using advanced in-situ, electron tomography, and precession electron diffraction techniques to determine the structural evolution that occurs during advanced aging of Pd films with nanometer resolution. To date, significant progress has been made in studying the cavity structures in sputtered, evaporated, and pulsed-laser deposited Pd films that result from both the deposition parameters, as well as from He ion implantation. In addition, preliminary work has been done to determine the feasibility of performing precession electron diffraction (PED) and electron tomography in these type of systems. Significant future work is needed to determine the proper conditions such that relevant advanced aging protocols can be developed.
We have developed a new method to measure the composition of gaseous mixtures of any two hydrogen isotopes, as well as an inert gas component. When tritium is one of those hydrogen isotopes, there is usually some helium present, because the tritium decays to form helium at a rate of about 1% every 2 months. The usual way of measuring composition of these mixtures involves mass spectrometry, which involves bulky, energy-intensive, expensive instruments, including vacuum pumps that can quite undesirably disperse tritium. Our approach uses calorimetry of a small quantity of hydrogen-absorbing material to determine gas composition without consuming or dispersing the analytes. Our work was a proof of principle using a rather large and slow benchtop calorimeter. Incorporation of microfabricated calorimeters, such as those that have been developed in Sandia’s MicroChemLab program or that are now commercially available, would allow for faster measurements and a smaller instrument footprint.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials and Interfaces
A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performance were studied. As a result, the composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials
Abstract not provided.
Abstract not provided.
This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.
Here we investigated the microstructural response of various Pd physically vapor deposited films and Er and ErD2 samples prepared from neutron Tube targets to implanted He via in situ ion irradiation transmission electron microscopy and subsequent in situ annealing experiments. Small bubbles formed in both systems during implantation, but did not grow with increasing fluence or a short duration room temperature aging (weeks). Annealing produced large cavities with different densities in the two systems. The ErD2 showed increased cavity nucleation compared to Er. The spherical bubbles formed from high fluence implantation and rapid annealing in both Er and ErD2 cases differed from microstructures of naturally aged tritiated samples. Further work is still underway to determine the transition in bubble shape in the Er samples, as well as the mechanism for evolution in Pd films.
Abstract not provided.
Powder Technology
Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agents for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.
Abstract not provided.
This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.
Abstract not provided.
Chemistry of Materials
Abstract not provided.
Abstract not provided.
Microscopy Today
Abstract not provided.
Abstract not provided.
Abstract not provided.
ACS Applied Materials&Interfaces
Abstract not provided.
A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The EC redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.
Abstract not provided.
Nanostructured WO3/TiO2 nanotubes with properties that enhance solar photoconversion reactions were developed, characterized and tested. The TiO2 nanotubes were prepared by anodization of Ti foil, and WO3 was electrodeposited on top of the nanotubes. SEM images show that these materials have the same ordered structure as TiO2 nanotubes, with an external nanostructured WO3 layer. Diffuse reflectance spectra showed an increase in the visible absorption relative to bare TiO2 nanotubes, and in the UV absorption relative to bare WO3 films. Incident simulated solar photon-to-current efficiency increased from 30% (for bare WO3) to 50% (for WO3/TiO2 composites). With the addition of diverse organic pollutants, the photocurrent densities exhibited more than a 5-fold increase. Chemical oxygen demand measurements showed the simultaneous photodegradation of organic pollutants. The results of this work indicate that the unique structure and composition of these composite materials enhance the charge carrier transport and optical properties compared with the parent materials.
Proposed for publication in Chemistry of Materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Nuclear Materials.
Abstract not provided.