Publications

Results 26–50 of 140
Skip to search filters

Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

Annual Review of Physical Chemistry

Osborn, David L.

Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

More Details

Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH3)2COO

Journal of Physical Chemistry A

Chhantyal-Pun, Rabi; Welz, Oliver; Savee, John D.; Eskola, Arkke J.; Lee, Edmond P.F.; Blacker, Lucy; Hill, Henry R.; Ashcroft, Matilda; Khan, M.A.; Lloyd-Jones, Guy C.; Evans, Louise; Rotavera, Brandon; Huang, Haifeng; Osborn, David L.; Mok, Daniel K.W.; Dyke, John M.; Shallcross, Dudley E.; Percival, Carl J.; Orr-Ewing, Andrew J.; Taatjes, Craig A.

The Criegee intermediate acetone oxide, (CH3)2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10-11 cm3 s-1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10-10 cm3 s-1 at 298 K and 10 Torr (He buffer). These values are similar to directly measured rate coefficients of anti-CH3CHOO with SO2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N2 from cavity ring-down decay of the ultraviolet absorption of (CH3)2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10-10 to (2.29 ± 0.08) × 10-10 cm3 s-1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10-12 cm3 s-1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH3CHOO with NO2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH3)2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s-1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH3)2COO with SO2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH3)2COO with NO2 and with SO2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products.

More Details

Reaction mechanisms of R and QOOH radicals produced in low-temperature oxidation of butanone

10th U.S. National Combustion Meeting

Caravan, Rebecca L.; Rotavera, Brandon; Papajak, Ewa; Antonov, Ivan O.; Ramasesha, Krupa R.; Zador, Judit Z.; Osborn, David L.; Taatjes, Craig A.

Product formation from the low-temperature oxidation of two isotopologues of the proposed biofuel butanone was studied via multiplexed photoionization mass spectrometry (MPIMS) at 500 and 700 K to elucidate product branching ratios for R and QOOH pathways. Products were identified and branching ratios quantified for a number of species, with the aid of ab initio calculations. Chain-inhibiting C-C β-scission of R and select chain-propagating channels are discussed. Whilst methyl vinyl ketone and HOO, (from chain-inhibiting pathways) were found to be major products, chain propagation pathways leading to carbonyl and cyclic ether species following OH-elimination from QOOH were found to be pertinent at both temperatures. At 700 K, R C-C β-scission was significantly enhanced, as evident in the branching ratios, however the formation of QOOH-derived chain-propagation products remained relevant.

More Details

Influence of oxygenation in cyclic hydrocarbons on chain-termination reactions from R + O2: Tetrahydropyran and cyclohexane

Proceedings of the Combustion Institute

Rotavera, Brandon R.; Savee, John D.; Antonov, Ivan O.; Caravan, Rebecca L.; Sheps, Leonid S.; Osborn, David L.; Zador, Judit Z.; Taatjes, Craig A.

Lignocellulosic-derived biofuels represent an important part of sustainable transportation en- ergy and often contain oxygenated functional groups due to the mono- and polysaccharide content in cellulose and hemicellulose. The yields of conjugate alkene + HO2 formation in low-temperature tetrahydropyran oxidation were studied and the influence of oxygen heteroatoms in cyclic hydrocarbons on the associated chain-termination pathways stemming from R + O2 were examined. Relative to the initial radical concentration the trend in conjugate alkene branching fraction showed monotonic positive temperature dependence in both cyclohexane and tetrahydropyran except for tetrahydropyran at 10 torr where increasing the temperature to 700 K caused a decrease. Conjugate alkene branching fractions measured at 1520 torr for cyclohexane and tetrahydropyran followed monotonic positive temperature dependence. In contrast to the results at higher temperature where ring-opening of tetrahydropyranyl radicals interrupted R + O2chemistry and reduces the formation of conjugate alkenes branching fractions measured below 700 K were higher in tetrahydropyran compared to cyclohexane at 10 torr.

More Details

The reaction of Criegee intermediate CH2OO with water dimer: Primary products and atmospheric impact

Physical Chemistry Chemical Physics

Sheps, Leonid S.; Rotavera, Brandon; Eskola, Arkke J.; Osborn, David L.; Taatjes, Craig A.; Au, Kendrew; Shallcross, Dudley E.; Khan, M.A.; Percival, Carl J.

The rapid reaction of the smallest Criegee intermediate, CH2OO, with water dimers is the dominant removal mechanism for CH2OO in the Earth's atmosphere, but its products are not well understood. This reaction was recently suggested as a significant source of the most abundant tropospheric organic acid, formic acid (HCOOH), which is consistently underpredicted by atmospheric models. However, using time-resolved measurements of reaction kinetics by UV absorption and product analysis by photoionization mass spectrometry, we show that the primary products of this reaction are formaldehyde and hydroxymethyl hydroperoxide (HMHP), with direct HCOOH yields of less than 10%. Incorporating our results into a global chemistry-transport model further reduces HCOOH levels by 10-90%, relative to previous modeling assumptions, which indicates that the reaction CH2OO + water dimer by itself cannot resolve the discrepancy between the measured and predicted HCOOH levels.

More Details

Reactions of Atomic Carbon with Butene Isomers: Implications for Molecular Growth in Carbon-Rich Environments

Journal of Physical Chemistry A

Bourgalais, J.; Spencer, Michael; Osborn, David L.; Goulay, F.; Le Picard, S.D.

Product detection studies of C(3P) atom reactions with butene (C4H8) isomers (but-1-ene, cis-but-2-ene, trans-but-2-ene) are carried out in a flow tube reactor at 353 K and 4 Torr under multiple collision conditions. Ground state carbon atoms are generated by 248 nm laser photolysis of tetrabromomethane, CBr4, in a buffer of helium. Thermalized reaction products are detected using synchrotron tunable VUV photoionization and time-of-flight mass spectrometry. The temporal profiles of the detected ions are used to discriminate products from side or secondary reactions. For the C(3P) + trans-but-2-ene and C(3P) + cis-but-2-ene reactions, various isomers of C4H5 and C5H7 are identified as reaction products formed via CH3 and H elimination. Assuming equal ionization cross sections for all C4H5 and C5H7 isomers, C4H5:C5H7 branching ratios of 0.63:1 and 0.60:1 are derived for the C(3P) + trans-but-2-ene and the C(3P) + cis-but-2-ene reactions, respectively. For the C(3P) + but-1-ene reaction, two reaction channels are observed: the H-elimination channel, leading to the formation of the ethylpropargyl isomer, and the C3H3 + C2H5 channel. Assuming equal ionization cross sections for ethylpropargyl and C3H3 radicals, a branching ratio of 1:0.95 for the C3H3 + C2H5 and H + ethylpropargyl channels is derived. The experimental results are compared to previous H atom branching ratios and used to propose the most likely mechanisms for the reaction of ground state carbon atoms with butene isomers. (Chemical Equation Presented).

More Details

Resonance stabilization effects on ketone autoxidation: Isomer-Specific cyclic ether and ketohydroperoxide formation in the low-Temperature (400−625 k) oxidation of diethyl ketone

Journal of Physical Chemistry A

Scheer, Adam M.; Eskola, Arkke J.; Osborn, David L.; Sheps, Leonid S.; Taatjes, Craig A.

The pulsed photolytic chlorine-initiated oxidation of diethyl ketone [DEK; (CH3CH2)2CO], 2,2,4,4-d4-DEK [d4-DEK; (CH3CD2)2CO], and 1,1,1,5,5,5-d6-DEK [d6-DEK; (CD3CH2)2CO] is studied at 8 torr and 1−2 atm and from 400−625 K. Cl atoms produced by laser photolysis react with diethyl ketone to form either primary (3-pentan-on-1-yl, RP) or secondary (3-pentan-on-2-yl, RS) radicals, which in turn react with O2. Multiplexed time-of-flight mass spectrometry, coupled to either a hydrogen discharge lamp or tunable synchrotron photoionizing radiation, is used to detect products as a function of mass, time, and photon energy. At 8 torr, the nature of the chain propagating cyclic ether + OH channel changes as a function of temperature. At 450 K, the production of OH is mainly in conjunction with formation of 2,4-dimethyloxetan-3-one, resulting from reaction of the resonance-stabilized secondary RS with O2. In contrast, at 550 K and 8 torr, 2-methyl-tetrahydrofuran-3-one, originating from oxidation of the primary radical (RP), is observed as the dominant cyclic ether product. Formation of both of these cyclic ether production channels proceeds via a resonance-stabilized hydroperoxy alkyl (QOOH) intermediate. Little or no ketohydroperoxide (KHP) is observed under the low-pressure conditions. At higher O2 concentrations and higher pressures (1−2 atm), a strong KHP signal appears as the temperature is increased above 450 K. Definitive isomeric identification from measurements on the deuterated DEK isotopologues indicates the favored pathway produces a γ-KHP via resonance-stabilized alkyl, QOOH, and HOOPOOH radicals. Time-resolved measurements reveal the KHP formation becomes faster and signal more intense upon increasing temperature from 450 to 575 K before intensity drops significantly at 625 K. The KHP time profile also shows a peak followed by a gradual depletion for the extent of experiment. Several tertiary products exhibit a slow accumulation in coincidence with the observed KHP decay. These products can be associated with decomposition of KHP by β-scission pathways or via isomerization of a γ-KHP into a cyclic peroxide intermediate (Korcek mechanism). The oxidation of d4-DEK, where kinetic isotope effects disfavor γ-KHP formation, shows greatly reduced KHP formation and associated signatures from KHP decomposition products.

More Details

Breaking through the false coincidence barrier in electron-ion coincidence experiments

Journal of Chemical Physics

Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick; Bodi, Andras; Voronova, Krisztina; Sztáray, Bálint

Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2-3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9+, whereas Ar4+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.

More Details

Pressure-dependent competition among reaction pathways from first- and second-O2 additions in the low-temperature oxidation of tetrahydrofuran

Journal of Physical Chemistry A

Antonov, Ivan O.; Zador, Judit Z.; Rotavera, Brandon R.; Papajak, Ewa P.; Osborn, David L.; Taatjes, Craig A.; Sheps, Leonid S.

We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.

More Details

Low Temperature Chlorine-Initiated Oxidation of Small-Chain Methyl Esters: Quantification of Chain-Terminating HO2-Elimination Channels

Journal of Physical Chemistry A

Muller, Giel; Scheer, Adam; Osborn, David L.; Taatjes, Craig A.; Meloni, Giovanni

Cl-initiated oxidation reactions of three small-chain methyl esters, methyl propanoate (CH3CH2COOCH3; MP), methyl butanoate (CH3CH2CH2COOCH3; MB), and methyl valerate (CH3CH2CH2CH2COOCH3; MV), are studied at 1 or 8 Torr and 550 and 650 K. Products are monitored as a function of mass, time, and photoionization energy using multiplexed photoionization mass spectrometry coupled to tunable synchrotron photoionization radiation. Pulsed photolysis of molecular chlorine is the source of Cl radicals, which remove an H atom from the ester, forming a free radical. In each case, after addition of O2 to the initial radicals, chain-terminating HO2-elimination reactions are observed to be important. Branching ratios among competing HO2-elimination channels are determined via absolute photoionization spectra of the unsaturated methyl ester coproducts. At 550 K, HO2-elimination is observed to be selective, resulting in nearly exclusive production of the conjugated methyl ester coproducts, methyl propenoate, methyl-2-butenoate, and methyl-2-pentenoate, respectively. However, in MV, upon raising the temperature to 650 K, other HO2-elimination pathways are observed that yield methyl-3-pentenoate and methyl-4-pentenoate. In each methyl ester oxidation reaction, a peak is observed at a mass consistent with cyclic ether formation, indicating chain-propagating OH loss/ring formation pathways via QOOH intermediates. Evidence is observed for the participation of resonance-stabilized QOOH in the most prominent cyclic ether pathways. Stationary point energies for HO2-elimination pathways and select cyclic ether formation channels are calculated at the CBS-QB3 level of theory and assist in the assignment of reaction pathways and final products.

More Details

Formation and stability of gas-phase o-benzoquinone from oxidation of ortho-hydroxyphenyl: A combined neutral and distonic radical study

Physical Chemistry Chemical Physics

Prendergast, Matthew B.; Kirk, Benjamin B.; Savee, John D.; Osborn, David L.; Taatjes, Craig A.; Masters, Kye S.; Blanksby, Stephen J.; Da Silva, Gabriel; Trevitt, Adam J.

Gas-phase product detection studies of o-hydroxyphenyl radical and O2 are reported at 373, 500, and 600 K, at 4 Torr (533.3 Pa), using VUV time-resolved synchrotron photoionisation mass spectrometry. The dominant products are assigned as o-benzoquinone (C6H4O2, m/z 108) and cyclopentadienone (C5H4O, m/z 80). It is concluded that cyclopentadienone forms as a secondary product from prompt decomposition of o-benzoquinone (and dissociative ionization of o-benzoquinone may contribute to the m/z 80 signal at photon energies ≳9.8 eV). Ion-trap reactions of the distonic o-hydroxyphenyl analogue, the 5-ammonium-2-hydroxyphenyl radical cation, with O2 are also reported and concur with the assignment of o-benzoquinone as the dominant product. The ion-trap study also provides support for a mechanism where cyclopentadienone is produced by decarbonylation of o-benzoquinone. Kinetic studies compare oxidation of the ammonium-tagged o-hydroxyphenyl and o-methylphenyl radical cations along with trimethylammonium-tagged analogues. Reaction efficiencies are found to be ca. 5% for both charge-tagged o-hydroxyphenyl and o-methylphenyl radicals irrespective of the charged substituent. G3X-K quantum chemical calculations are deployed to rationalise experimental results for o-hydroxyphenyl + O2 and its charge-tagged counterpart. The prevailing reaction mechanism, after O2 addition, involves a facile 1,5-H shift in the peroxyl radical and subsequent elimination of OH to yield o-benzoquinone that is reminiscent of the Waddington mechanism for β-hydroxyperoxyl radicals. These results suggest o-hydroxyphenyl + O2 and decarbonylation of o-benzoquinone serve as plausible OH and CO sources in combustion.

More Details

Photoelectron Wave Function in Photoionization: Plane Wave or Coulomb Wave?

Journal of Physical Chemistry Letters

Gozem, Samer; Gunina, Anastasia O.; Ichino, Takatoshi; Osborn, David L.; Stanton, John F.; Krylov, Anna I.

The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

More Details

Time- and Isomer-Resolved Measurements of Sequential Addition of Acetylene to the Propargyl Radical

Journal of Physical Chemistry Letters

Savee, John D.; Selby, Talitha M.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.

Soot formation in combustion is a complex process in which polycyclic aromatic hydrocarbons (PAHs) are believed to play a critical role. Recent works concluded that three consecutive additions of acetylene (C2H2) to propargyl (C3H3) create a facile route to the PAH indene (C9H8). However, the isomeric forms of C5H5 and C7H7 intermediates in this reaction sequence are not known. We directly investigate these intermediates using time- and isomer-resolved experiments. Both the resonance stabilized vinylpropargyl (vp-C5H5) and 2,4-cyclopentadienyl (c-C5H5) radical isomers of C5H5 are produced, with substantially different intensities at 800 K vs 1000 K. In agreement with literature master equation calculations, we find that c-C5H5 + C2H2 produces only the tropyl isomer of C7H7 (tp-C7H7) below 1000 K, and that tp-C7H7 + C2H2 terminates the reaction sequence yielding C9H8 (indene) + H. This work demonstrates a pathway for PAH formation that does not proceed through benzene.

More Details

Molecular weight growth in Titan's atmosphere: Branching pathways for the reaction of 1-propynyl radical (H3CCC) with small alkenes and alkynes

Physical Chemistry Chemical Physics

Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.; Osborn, David L.; Wilson, Kevin R.

The reaction of small hydrocarbon radicals (i.e. CN, C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CCC), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

More Details

Multiplexed Photoionization Mass Spectrometry Investigation of the O(3P) + Propyne Reaction

Journal of Physical Chemistry A

Savee, John D.; Borkar, Sampada; Welz, Oliver; Sztáray, Bálint; Taatjes, Craig A.; Osborn, David L.

The reaction of O(3P) + propyne (C3H4) was investigated at 298 K and 4 Torr using time-resolved multiplexed photoionization mass spectrometry and a synchrotron-generated tunable vacuum ultraviolet light source. The time-resolved mass spectra of the observed products suggest five major channels under our conditions: C2H3 + HCO, CH3 + HCCO, H + CH3CCO, C2H4 + CO, and C2H2 + H2 + CO. The relative branching ratios for these channels were found to be 1.00, (0.35 ± 0.11), (0.18 ± 0.10), (0.73 ± 0.27), and (1.31 ± 0.62). In addition, we observed signals consistent with minor production of C3H3 + OH and H2 + CH2CCO, although we cannot conclusively assign them as direct product channels from O(3P) + propyne. The direct abstraction mechanism plays only a minor role (≤1%), and we estimate that O(3P) addition to the central carbon of propyne accounts for 10% of products, with addition to the terminal carbon accounting for the remaining 89%. The isotopologues observed in experiments using d1-propyne (CH3CCD) and analysis of product branching in light of previously computed stationary points on the singlet and triplet potential energy surfaces (PESs) relevant to O(3P) + propyne suggest that, under our conditions, (84 ± 14)% of the observed product channels from O(3P) + propyne result from intersystem crossing from the initial triplet PES to the lower-lying singlet PES.

More Details

New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling

Journal of Physical Chemistry A

Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.; Goldsmith, C.F.; Savee, John D.; Osborn, David L.; Taatjes, Craig A.; Klippenstein, Stephen J.; Sheps, Leonid S.

Low-temperature propane oxidation was studied at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ∼1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O2 reactions by direct HO2 elimination from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C3H6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). The model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical-radical reactions.

More Details
Results 26–50 of 140
Results 26–50 of 140