Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, and thermal phenomena of lithium-ion batteries at the mesoscale. We review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.
Interface-conforming elements generated by the conformal decomposition finite element method can have arbitrarily poor quality due to the arbitrary intersection of the base triangular or tetrahedral mesh with material interfaces. This can have severe consequences for both the solvability of linear systems and for the interpolation error of fields represented on these meshes. The present work demonstrates that snapping the base mesh nodes to the interface whenever the interface cuts close to a node results in conforming meshes of good quality. Theoretical limits on the snapping tolerance are derived, and even conservative tolerance choices result in limiting the stiffness matrix condition number to within a small multiple of that of the base mesh. Interpolation errors are also well controlled in the norms of interest. In 3D, use of node-to-interface snapping also permits a simpler and more robust vertex ID-based element decomposition algorithm to be used with no serious detriment to mesh quality.
We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Thoughts on m odel improvements are also discussed.