Wind Energy Validation Roadmap and Uncertainty Quantification Progress
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Energies
Subscale wind turbines can be installed in the field for the development of wind technologies, for which the blade aerodynamics can be designed in a way similar to that of a full-scale wind turbine. However, it is not clear whether the wake of a subscale turbine, which is located closer to the ground and faces different incoming turbulence, is also similar to that of a full-scale wind turbine. In this work we investigate the wakes from a full-scale wind turbine of rotor diameter 80 m and a subscale wind turbine of rotor diameter of 27 m using large-eddy simulation with the turbine blades and nacelle modeled using actuator surface models. The blade aerodynamics of the two turbines are the same. In the simulations, the two turbines also face the same turbulent boundary inflows. The computed results show differences between the two turbines for both velocity deficits and turbine-added turbulence kinetic energy. Such differences are further analyzed by examining the mean kinetic energy equation.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The development of a next generation high-fidelity modeling code for wind plant applications is one of the central focus areas of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative. The code is based on a highly scalable framework, currently called Nalu-Wind. One key aspect of the model development is a coordinated formal validation program undertaken specifically to establish the predictive capability of Nalu-Wind for wind plant applications. The purpose of this document is to define the verification and validation (V&V) plan for the A2e high-fidelity modeling capability. It summarizes the V&V framework, identifies code capability users and use cases, describes model validation needs, and presents a timeline to meet those needs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018
Wind energy is stochastic in nature; the prediction of aerodynamic quantities and loads relevant to wind energy applications involves modeling the interaction of a range of physics over many scales for many different cases. These predictions require a range of model fidelity, as predictive models that include the interaction of atmospheric and wind turbine wake physics can take weeks to solve on institutional high performance computing systems. In order to quantify the uncertainty in predictions of wind energy quantities with multiple models, researchers at Sandia National Laboratories have applied Multilevel-Multifidelity methods. A demonstration study was completed using simulations of a NREL 5MW rotor in an atmospheric boundary layer with wake interaction. The flow was simulated with two models of disparate fidelity; an actuator line wind plant large-eddy scale model, Nalu, using several mesh resolutions in combination with a lower fidelity model, OpenFAST. Uncertainties in the flow conditions and actuator forces were propagated through the model using Monte Carlo sampling to estimate the velocity defect in the wake and forces on the rotor. Coarse-mesh simulations were leveraged along with the lower-fidelity flow model to reduce the variance of the estimator, and the resulting Multilevel-Multifidelity strategy demonstrated a substantial improvement in estimator efficiency compared to the standard Monte Carlo method.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Power production of the turbines at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at the Texas Tech University’s National Wind Institute Research Center was measured experimentally and simulated for neutral atmospheric boundary layer operating conditions. Two V27 wind turbines were aligned in series with the dominant wind direction, and the upwind turbine was yawed to investigate the impact of wake steering on the downwind turbine. Two conditions were investigated, including that of the leading turbine operating alone and both turbines operating in series. The field measurements include meteorological evaluation tower (MET) data and light detection and ranging (lidar) data. Computations were performed by coupling large eddy simulations (LES) in the three-dimensional, transient code Nalu-Wind with engineering actuator line models of the turbines from OpenFAST. The simulations consist of a coarse precursor without the turbines to set up an atmospheric boundary layer inflow followed by a simulation with refinement near the turbines. Good agreement between simulations and field data are shown. These results demonstrate that Nalu-Wind holds the promise for the prediction of wind plant power and loads for a range of yaw conditions.