Sensitivity Analysis of a Technique for the Extraction of Interface Trap Density in SiC MOSFETs from Subthreshold Characteristics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE International Reliability Physics Symposium Proceedings
A method for extracting interface trap density (DIT) from subthreshold I-V characteristics is used to analyze data on a SiC MOSFET stressed for thirty minutes at 175°C with a gate bias of-20 V. Without knowing the channel doping, the change in DIT can be calculated when referenced to an energy level correlated with the threshold voltage. © 2014 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
ECS Transactions (Online)
Resistive random access memory (ReRAM) has become a promising candidate for next-generation high-performance non-volatile memory that operates by electrically tuning resistance states via modulating vacancy concentrations. Here, we demonstrate a wafer-scale process for resistive switching in tantalum oxide that is completely CMOS compatible. The resulting devices are forming-free and with greater than 1x105 cycle endurance.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.