Ultra-Efficient Neural Algorithm Accelerator Using Processing With Memory (Poster)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2019 International Symposium on VLSI Technology, Systems and Application, VLSI-TSA 2019
Analog crossbars have the potential to reduce the energy and latency required to train a neural network by three orders of magnitude when compared to an optimized digital ASIC. The crossbar simulator, CrossSim, can be used to model device nonidealities and determine what device properties are needed to create an accurate neural network accelerator. Experimentally measured device statistics are used to simulate neural network training accuracy and compare different classes of devices including TaOx ReRAM, Lir-Co-Oz devices, and conventional floating gate SONOS memories. A technique called 'Periodic Carry' can overcomes device nonidealities by using a positional number system while maintaining the benefit of parallel analog matrix operations.
Abstract not provided.
IEEE Transactions on Nuclear Science
The image classification accuracy of a TaOx ReRAM-based neuromorphic computing accelerator is evaluated after intentionally inducing a displacement damage up to a fluence of 1014 2.5-MeV Si ions/cm2 on the analog devices that are used to store weights. Results are consistent with a radiation-induced oxygen vacancy production mechanism. When the device is in the high-resistance state during heavy ion radiation, the device resistance, linearity, and accuracy after training are only affected by high fluence levels. The findings in this paper are in accordance with the results of previous studies on TaOx-based digital resistive random access memory. When the device is in the low-resistance state during irradiation, no resistance change was detected, but devices with a 4-kΩ inline resistor did show a reduction in accuracy after training at 1014 2.5-MeV Si ions/cm2. This indicates that changes in resistance can only be somewhat correlated with changes to devices' analog properties. This paper demonstrates that TaOx devices are radiation tolerant not only for high radiation environment digital memory applications but also when operated in an analog mode suitable for neuromorphic computation and training on new data sets.
Abstract not provided.
Applied Physics A: Materials Science and Processing
We demonstrate creation of electroforming-free TaOx memristive devices using focused ion beam irradiations to locally define conductive filaments in TaOx films. Electrical characterization shows that these irradiations directly create fully functional memristors without the need for electroforming. Ion beam forming of conductive filaments combined with state-of-the-art nano-patterning presents a CMOS compatible approach to wafer-level fabrication of fully formed operational memristors.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings - IEEE International Conference on Rebooting Computing (ICRC)
Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaOx, and two conducting metallization systems, Cu-SiO2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. As a result, this suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.
Journal of Computational Electronics
With the end of Dennard scaling and the ever-increasing need for more efficient, faster computation, resistive switching devices (ReRAM), often referred to as memristors, are a promising candidate for next generation computer hardware. These devices show particular promise for use in an analog neuromorphic computing accelerator as they can be tuned to multiple states and be updated like the weights in neuromorphic algorithms. Modeling a ReRAM-based neuromorphic computing accelerator requires a compact model capable of correctly simulating the small weight update behavior associated with neuromorphic training. These small updates have a nonlinear dependence on the initial state, which has a significant impact on neural network training. Consequently, we propose the piecewise empirical model (PEM), an empirically derived general purpose compact model that can accurately capture the nonlinearity of an arbitrary two-terminal device to match pulse measurements important for neuromorphic computing applications. By defining the state of the device to be proportional to its current, the model parameters can be extracted from a series of voltages pulses that mimic the behavior of a device in an analog neuromorphic computing accelerator. This allows for a general, accurate, and intuitive compact circuit model that is applicable to different resistance-switching device technologies. In this work, we explain the details of the model, implement the model in the circuit simulator Xyce, and give an example of its usage to model a specific Ta / TaO x device.
2017 IEEE International Conference on Rebooting Computing, ICRC 2017 - Proceedings
Resistive memory (ReRAM) shows promise for use as an analog synapse element in energy-efficient neural network algorithm accelerators. A particularly important application is the training of neural networks, as this is the most computationally-intensive procedure in using a neural algorithm. However, training a network with analog ReRAM synapses can significantly reduce the accuracy at the algorithm level. In order to assess this degradation, analog properties of ReRAM devices were measured and hand-written digit recognition accuracy was modeled for the training using backpropagation. Bipolar filamentary devices utilizing three material systems were measured and compared: one oxygen vacancy system, Ta-TaOx, and two conducting metallization systems, Cu-SiO2, and Ag/chalcogenide. Analog properties and conductance ranges of the devices are optimized by measuring the response to varying voltage pulse characteristics. Key analog device properties which degrade the accuracy are update linearity and write noise. Write noise may improve as a function of device manufacturing maturity, but write nonlinearity appears relatively consistent among the different device material systems and is found to be the most significant factor affecting accuracy. This suggests that new materials and/or fundamentally different resistive switching mechanisms may be required to improve device linearity and achieve higher algorithm training accuracy.
Abstract not provided.
Abstract not provided.
Digest of Technical Papers - Symposium on VLSI Technology
Analog resistive memories promise to reduce the energy of neural networks by orders of magnitude. However, the write variability and write nonlinearity of current devices prevent neural networks from training to high accuracy. We present a novel periodic carry method that uses a positional number system to overcome this while maintaining the benefit of parallel analog matrix operations. We demonstrate how noisy, nonlinear TaOx devices that could only train to 80% accuracy on MNIST, can now reach 97% accuracy, only 1% away from an ideal numeric accuracy of 98%. On a file type dataset, the TaOx devices achieve ideal numeric accuracy. In addition, low noise, linear Li1-xCoO2 devices train to ideal numeric accuracies using periodic carry on both datasets.
2017 17th European Conference on Radiation and Its Effects on Components and Systems, RADECS 2017
The effects of temperature on the total ionizing dose (TID) response of tantalum oxide (TaOx) memristive bit cells are investigated. The TaOx devices were manufactured by Sandia National Laboratories (SNL). In-situ data were obtained as a function of temperature, accumulated dose, and bias at the Gamma Irradiation Facility (GIF). The data indicate that devices reset into the high resistance off-state exhibit decreases in resistance when the temperature is increased. However, an increased susceptibility to TID at elevated temperatures was not observed.
Abstract not provided.
2017 5th Berkeley Symposium on Energy Efficient Electronic Systems, E3S 2017 - Proceedings
Resistive memory crossbars can dramatically reduce the energy required to perform computations in neural algorithms by three orders of magnitude when compared to an optimized digital ASIC [1]. For data intensive applications, the computational energy is dominated by moving data between the processor, SRAM, and DRAM. Analog crossbars overcome this by allowing data to be processed directly at each memory element. Analog crossbars accelerate three key operations that are the bulk of the computation in a neural network as illustrated in Fig 1: vector matrix multiplies (VMM), matrix vector multiplies (MVM), and outer product rank 1 updates (OPU)[2]. For an NxN crossbar the energy for each operation scales as the number of memory elements O(N2) [2]. This is because the crossbar performs its entire computation in one step, charging all the capacitances only once. Thus the CV2 energy of the array scales as array size. This fundamentally better than trying to read or write a digital memory. Each row of any NxN digital memory must be accessed one at a time, resulting in N columns of length O(N) being charged N times, requiring O(N3) energy to read a digital memory. Thus an analog crossbar has a fundamental O(N) energy scaling advantage over a digital system. Furthermore, if the read operation is done at low voltage and is therefore noise limited, the read energy can even be independent of the crossbar size, O(1) [2].
Abstract not provided.