Publications

Results 101–118 of 118
Skip to search filters

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE energy storage systems program (FY11 Quarter 3: April through June 2011)

Enos, David E.; Ferreira, Summer R.

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 3 Milestone was completed on time. The milestone entails an ex situ analysis of a control as well as three carbon-containing negative plates in the raw, as cast form as well as after formation. The morphology, porosity, and porosity distribution within each plate was evaluated. In addition, baseline electrochemical measurements were performed on each battery to establish their initial performance. These measurements included capacity, internal resistance, and float current. The results obtained for the electrochemical testing were in agreement with previous evaluations performed at East Penn manufacturing. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated.

More Details

Differential imaging microscopy of physically complex surfaces undergoing atmospheric corrosion

NACE - International Corrosion Conference Series

Enos, David E.; Girard, Gerald R.

Frequently, optical observation of component materials is the only viable technique to evaluate degradation processes in-situ. Unfortunately, due to the visually complex nature of many surfaces (e.g., scratches, occlusions, etc.), the degradation process, particularly at early stages, is difficult or impossible to resolve. As a result, studies are limited to evaluating degradation well after initiation has taken place. Thus, there is a need for a technique that could be implemented utilizing image processing that allows the de-convolution of changes due to the degradation process of interest from the background "noise". An automated differential imaging system was constructed for in-situ studies of both aqueous and atmospheric environments to fulfill this need. The basic functionality of the Differential imaging system was demonstrated on gold plated copper and gold /nickel plated copper coupons exposed to a sulfide containing atmosphere. © 2011 by NACE International.

More Details

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 1: October through December 2010)

Enos, David E.; Hund, Thomas D.

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 1 Milestone was completed on time. The milestone entails conducting a thorough literature review to establish the current level of understanding of the mechanisms through which carbon additions to the negative active material improve valve-regulated lead-acid (VRLA) batteries. Most studies have entailed phenomenological research observing that the carbon additions prevent/reduce sulfation of the negative electrode; however, no understanding is available to provide insight into why certain carbons are successful while others are not. Impurities were implicated in one recent review of the electrochemical behavior of carbon additions. Four carbon samples have been received from East Penn Manufacturing and impurity contents have been analyzed. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown in the graph.

More Details

Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011)

Enos, David E.; Hund, Thomas D.

This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

More Details

Carbon-enhanced VRLA batteries

Enos, David E.; Hund, Thomas D.

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

More Details

Modeling pore corrosion in normally open gold- plated copper connectors

Moffat, Harry K.; Sun, Amy C.; Enos, David E.; Serna, Lysle M.; Sorensen, Neil R.; Battaile, Corbett C.

The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.

More Details

Pore corrosion model for gold-plated copper contacts

IEEE Transactions on Components and Packaging Technologies

Sun, Amy C.; Moffat, Harry K.; Enos, David E.; George, Carly S.

The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H2S at 30 °C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to close the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily. © 2007 IEEE.

More Details

Development of a novel technique to assess the vulnerability of micro-mechanical system components to environmentally assisted cracking

Enos, David E.; Goods, Steven H.

Microelectromechanical systems (MEMS) will play an important functional role in future DOE weapon and Homeland Security applications. If these emerging technologies are to be applied successfully, it is imperative that the long-term degradation of the materials of construction be understood. Unlike electrical devices, MEMS devices have a mechanical aspect to their function. Some components (e.g., springs) will be subjected to stresses beyond whatever residual stresses exist from fabrication. These stresses, combined with possible abnormal exposure environments (e.g., humidity, contamination), introduce a vulnerability to environmentally assisted cracking (EAC). EAC is manifested as the nucleation and propagation of a stable crack at mechanical loads/stresses far below what would be expected based solely upon the materials mechanical properties. If not addressed, EAC can lead to sudden, catastrophic failure. Considering the materials of construction and the very small feature size, EAC represents a high-risk environmentally induced degradation mode for MEMS devices. Currently, the lack of applicable characterization techniques is preventing the needed vulnerability assessment. The objective of this work is to address this deficiency by developing techniques to detect and quantify EAC in MEMS materials and structures. Such techniques will allow real-time detection of crack initiation and propagation. The information gained will establish the appropriate combinations of environment (defining packaging requirements), local stress levels, and metallurgical factors (composition, grain size and orientation) that must be achieved to prevent EAC.

More Details

Pore corrosion model for gold-plated copper contacts

Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts

Sun, A.C.; Moffat, Harry K.; Enos, David E.; Glauner, C.S.

The research goal presented here is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10ppb H 2S at 30°C and a relative humidity of 70% This environment accelerates the attack normally observed in a light industrial environment (similar to, but less severe than, the Battelle class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the electrical resistance of a probe contact with the aged surface, as a function of exposure time. A pore corrosion numerical model was used to predict both the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to close the numerical model. Comparisons are made to the experimentally observed corrosion-bloom number density, bloom size distribution, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area and a probability for bloom-growth extinction proportional to the bloom volume, due to Kirkendall voiding. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms is heavily weighted by contributions from the halo region.

More Details

Laboratory evaluation of corrosion mitigation strategies for large, once-through heat exchangers

Materials Performance

Enos, David E.; Levin, Bruce L.; Hinkebein, Thomas E.

Two mitigation strategies including the use of corrosion resistant alloys (CRA) for the tubing and the application of a corrosion inhibitor and anti-fouling package in the water were used in the laboratory simulation of corrosion in large oil coolers at US Strategic Petroleum Reserve. A closed-loop, recirculating system was designed and constructed. The corrosion sensors were monitored over time using a commercially available linear polarization resistance (LPR) meter. The ERW steel exhibited significant localized attack along the entire weld root, in addition to pitting along the rest of the surface, as observed on the seamless tubing.

More Details

The evaluation of several corrosion mitigation strategies for oil coolers used by the strategic petroleum reserve

Enos, David E.; Levin, Bruce L.; Hinkebein, Thomas E.

The goal of this study was to first establish the fitness for service of the carbon steel based oil coolers presently located at the Bryan Mound and West Hackberry sites, and second, to compare quantitatively the performance of two proposed corrosion mitigation strategies. To address these goals, a series of flow loops were constructed to simulate the conditions present within the oil coolers allowing the performance of each corrosion mitigation strategy, as well as the baseline performance of the existing systems, to be assessed. As prior experimentation had indicated that the corrosion and fouling was relatively uniform within the oil coolers, the hot and cold side of the system were simulated, representing the extremes of temperature observed within a typical oil cooler. Upon completion of the experiment, the depth of localized attack observed on carbon steel was such that perforation of the tube walls would likely result within a 180 day drawdown procedure at West Hackberry. Furthermore, considering the average rate of wall recession (from LPR measurements), combined with the extensive localized attack (pitting) which occurred in both environments, the tubing wall thickness remaining after 180 days would be less than that required to contain the operating pressures of the oil coolers for both sites. Finally, the inhibitor package, while it did reduce the measured corrosion rate in the case of the West Hackberry solutions, did not provide a sufficient reduction in the observed attack to justify its use.

More Details
Results 101–118 of 118
Results 101–118 of 118