Publications

Results 51–75 of 118
Skip to search filters

The long-term corrosion performance of alloy 22 in heated brine solutions

Corrosion

Enos, David E.; Bryan, Charles R.

Long-term corrosion experiments have been performed on Alloy 22 (UNS N06022), in a series of heated brines formulated to represent evaporatively concentrated ground water, to evaluate the long-term corrosion performance of the material. These solutions included 0.5 M NaCl, in addition to two simulated concentrated ground water solutions. Under conditions where Alloy 22 was anticipated to be passive, the corrosion rate was found to be vanishingly small (i.e., below the resolution of the weight-loss technique used to quantify corrosion in this study). However, under low pH conditions where Alloy 22 was anticipated to be active, or more specifically, where the chromium oxide passive film was not thermodynamically stable, the corrosion rate was appreciable. Furthermore, under such conditions the corrosion rate was observed to be a strong function of temperature, with an activation energy of 72.9±1.8 kJ/mol. Time of Flight-Secondary Ion Mass Spectroscopy analysis of the oxide layer revealed that, while sulfur was present within the oxide for all test conditions, no accumulation was observed at or near the metal/oxide interface. These observations confirm that inhibition of passive film formation via sulfur accumulation does not occur during the corrosion of Alloy 22.

More Details

Results of stainless steel canister corrosion studies and environmental sample investigations

Bryan, Charles R.; Enos, David E.

This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions. To evaluate the potential environment on the surface of the canisters, SNL is working with the Electric Power Research Institute (EPRI) to collect and analyze dust samples from the surface of in-service SNF storage canisters. In FY 13, SNL analyzed samples from the Calvert Cliffs Independent Spent Fuel Storage Installation (ISFSI); here, results are presented for samples collected from two additional near-marine ISFSI sites, Hope Creek NJ, and Diablo Canyon CA. The Hope Creek site is located on the shores of the Delaware River within the tidal zone; the water is brackish and wave action is normally minor. The Diablo Canyon site is located on a rocky Pacific Ocean shoreline with breaking waves. Two types of samples were collected: SaltSmart™ samples, which leach the soluble salts from a known surface area of the canister, and dry pad samples, which collected a surface salt and dust using a swipe method with a mildly abrasive ScotchBrite™ pad. The dry samples were used to characterize the mineralogy and texture of the soluble and insoluble components in the dust via microanalytical techniques, including mapping X-ray Fluorescence spectroscopy and Scanning Electron Microscopy. For both Hope Creek and Diablo Canyon canisters, dust loadings were much higher on the flat upper surfaces of the canisters than on the vertical sides. Maximum dust sizes collected at both sites were slightly larger than 20 μm, but Phragmites grass seeds ~1 mm in size, were observed on the tops of the Hope Creek canisters. At both sites, the surface dust could be divided into fractions generated by manufacturing processes and by natural processes. The fraction from manufacturing processes consisted of variably-oxidized angular and spherical particles of stainless steel and iron, generated by machining and welding/cutting processes, respectively. Dust from natural sources consisted largely of detrital quartz and aluminosilicates (feldspars and clays) at both sites. At Hope Creek, soluble salts were dominated by sulfates and nitrates, mostly of calcium. Chloride was a trace component and the only chloride mineral observed by SEM was NaCl. Chloride surface loads measured by the Saltsmart™ sensors were very low, less than 60 mg m–2 on the canister top, and less than 10 mg m–2 on the canister sides. At Diablo Canyon, sea-salt aggregates of NaCl and Mg-SO4, with minor K and Ca, were abundant in the dust, in some cases dominating the observed dust assemblage. Measured Saltsmart™ chloride surface loads were very low (<5 mg m–2); however, high canister surface temperatures damaged the Saltsmart™ sensors, and, in view of the SEM observations of abundant sea-salts on the package surfaces, the measured surface loads may not be valid. Moreover, the more heavily-loaded canister tops at Diablo Canyon were not sampled with the Saltsmart™ sensors. The observed low surface loads do not preclude chloride-induced stress corrosion cracking (CISCC) at either site, because (1) the measured data may not be valid for the Diablo Canyon canisters; (2) the surface coverage was not complete (for instance, the 45º offset between the outlet and inlet vents means that near-inlet areas, likely to have heavier dust and salt loads, were not sampled); and (3) CISCC has been experimentally been observed at salt loads as low as 5-8 mg/m2. Experimental efforts at SNL to assess corrosion of interim storage canister materials include three tasks in FY14. First, a full-diameter canister mockup, made using materials and techniques identical to those used to make interim storage canisters, was designed and ordered from Ranor Inc., a cask vendor for Areva/TN. The mockup will be delivered prior to the end of FY14, and will be used for evaluating weld residual stresses and degrees of sensitization for typical interim storage canister welds. Following weld characterization, the mockup will be sectioned and provided to participating organizations for corrosion testing purposes. A test plan is being developed for these efforts. In a second task, experimental work was carried out to evaluate crevice corrosion of 304SS in the presence of limited reactants, as would be present on a dustcovered storage canister. This work tests the theory that limited salt loads will limit corrosion penetration over time, and is a continuation of work carried out in FY13. Laser confocal microscopy was utilized to assess the volume and depth of corrosion pits formed during the crevice corrosion tests. Results indicate that for the duration of the current experiments (100 days), no stifling of corrosion occurred due to limitations in the amount of reactants present at three different salt loadings. Finally, work has been carried out this year perfecting an instrument for depositing sea-salts onto metal surfaces for atmospheric corrosion testing purposes. The system uses an X-Y plotter system with a commercial airbrush, and deposition is monitored with a quartz crystal microbalance. The system is capable of depositing very even salt loadings, even at very low total deposition rates.

More Details

Materials for Consideration in Standardized Canister Design Activities

Bryan, Charles R.; Ilgen, Anastasia G.; Enos, David E.; Teich-McGoldrick, Stephanie T.; Hardin, Ernest H.

This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to establish corrosion rates and component lifetimes. Finally, it is unlikely that the aluminum-based neutron absorber materials that are commonly used in existing DPCs would survive for 10,000 years in disposal environments, because the aluminum will act as a sacrificial anode for the steel. We recommend additional testing of borated and Gd-bearing stainless steels, to establish general and localized corrosion resistance in repository-relevant environmental conditions.

More Details

Draft report: Results of stainless steel canister corrosion studies and environmental sample investigations

Bryan, Charles R.; Enos, David E.

This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions.

More Details

Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California

Bryan, Charles R.; Enos, David E.

Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

More Details
Results 51–75 of 118
Results 51–75 of 118