Publications

Results 26–50 of 120
Skip to search filters

Pushing Laser Pre-Heat in MagLIF

Geissel, Matthias G.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Fein, Jeffrey R.; Woodbury, Daniel W.; Davis, Daniel R.; Bliss, David E.; Scoglietti, Daniel S.; Gomez, Matthew R.; Ampleford, David A.; Awe, Thomas J.; Colombo, Anthony P.; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Slutz, Stephen A.; Ruiz, Daniel E.; Peterson, Kyle J.; Smith, Ian C.; Shores, Jonathon S.; Kimmel, Mark W.; Rambo, Patrick K.; Schwarz, Jens S.; Galloway, B.R.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Physics of Plasmas

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, C.S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

More Details

MagLIF Pre-Heat Optimization on the PECOS Surrogacy Platform

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Ampleford, David A.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David A.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias G.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, Patrick K.; Laity, George R.; Martin, Matthew; Nagayama, Taisuke N.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul S.; Schwarz, Jens S.; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund Y.; Cuneo, M.E.; Jones, Brent M.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.; Stygar, William A.

Abstract not provided.

Pre-Heat Optimization for Magnetized Liner Inertial Fusion at Sandia

Geissel, Matthias G.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Peterson, Kyle J.; Schollmeier, Marius; Schwarz, Jens S.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Progress in Preconditioning MagLIF fuel and its Impact on Performance

Peterson, Kyle J.; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Geissel, Matthias G.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens S.; Sefkow, Adam B.; Shores, Jonathon S.; Slutz, Stephen A.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Developing a Pre-Heat Platform for MagLIF with Z-Beamlet

Geissel, Matthias G.; Awe, Thomas J.; Bliss, David E.; Campbell, Edward M.; Gomez, Matthew R.; Glinsky, Michael E.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, Christopher A.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; Peterson, Kyle J.; Schollmeier, Marius; Schwarz, Jens S.; Sefkow, Adam B.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Vesey, Roger A.; Porter, John L.; Rochau, G.A.

Abstract not provided.

SBS Measurements for Sandia's MagLIF Program

Geissel, Matthias G.; Awe, Thomas J.; Bliss, David E.; Campbell, Edward M.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Kimmel, Mark W.; Knapp, Patrick K.; Peterson, Kyle J.; Jennings, Christopher A.; Sefkow, Adam B.; Shores, Jonathon S.; Sinars, Daniel S.; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Weis, Matthew R.; Porter, John L.

Abstract not provided.

Nonlinear laser-plasma interaction in magnetized liner inertial fusion

Proceedings of SPIE - The International Society for Optical Engineering

Geissel, Matthias G.; Awe, T.J.; Bliss, David E.; Campbell, Edward M.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Hansen, Stephanie B.; Jennings, C.; Kimmel, Mark W.; Knapp, Patrick K.; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle J.; Schollmeier, Marius; Scoglietti, Daniel S.; Sefkow, Adam B.; Shores, J.E.; Sinars, Daniel S.; Slutz, S.A.; Smith, Ian C.; Speas, C.S.; Vesey, Roger A.; Porter, John L.

Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. While magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Key LPI processes are determined, and mitigation methods are discussed. Results with and without improvement measures are presented.

More Details
Results 26–50 of 120
Results 26–50 of 120