Finite-difference simulation of atmospheric acoustic sound through a complex meteorological background over a topographically complex surface
EURONOISE 2006 - The 6th European Conference on Noise Control: Advanced Solutions for Noise Control
Acoustic wave propagation in a three-dimensional atmosphere that is spatially heterogeneous, time-varying, and/or moving is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, finite-difference time-domain (FDTD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. Dependent variables are stored on staggered spatial and temporal grids, and centered FDTD operators possess 2nd-order and 4th-order space/time accuracy. We first present results of a test that shows the accuracy of our algorithm by comparison with analytic formulations. We then present a contrast and comparison of the sound character at a series of distances from a point source activated with a causal source. We are able to investigate the effects of turbulence, complex meteorology (including wind effects), a topographically variable ground surface, and a partially reflective ground surface.