Publications

Results 51–64 of 64
Skip to search filters

Finite-difference simulation of atmospheric acoustic sound through a complex meteorological background over a topographically complex surface

EURONOISE 2006 - The 6th European Conference on Noise Control: Advanced Solutions for Noise Control

Symons, Neill P.; Aldridge, David F.; Wilson, D.K.; Marlin, David H.; Collier, Sandra L.; Ostashev, Vladimir E.

Acoustic wave propagation in a three-dimensional atmosphere that is spatially heterogeneous, time-varying, and/or moving is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, finite-difference time-domain (FDTD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. Dependent variables are stored on staggered spatial and temporal grids, and centered FDTD operators possess 2nd-order and 4th-order space/time accuracy. We first present results of a test that shows the accuracy of our algorithm by comparison with analytic formulations. We then present a contrast and comparison of the sound character at a series of distances from a point source activated with a causal source. We are able to investigate the effects of turbulence, complex meteorology (including wind effects), a topographically variable ground surface, and a partially reflective ground surface.

More Details

Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS)

Symons, Neill P.; Aldridge, David F.

This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

More Details

Development of a high-fidelity simulation capability for battlefield acoustics

Aldridge, David F.; Aldridge, David F.; Symons, Neill P.

Findings are presented from the first year of a joint project between the U.S. Army Engineer Research and Development Center, the U.S. Army Research Laboratory, and the Sandia National Laboratories. The purpose of the project is to develop a finite-difference, time-domain (FDTD) capability for simulating the acoustic signals received by battlefield acoustic sensors. Many important effects, such as scattering from trees and buildings, interactions with dynamic atmospheric wind and temperature fields, and nonstationary target properties, can be accommodated by the simulation. Such a capability has much potential for mitigating the need for costly field data collection and furthering the development of robust identification and tracking algorithms. The FDTD code is based on a carefully derived set of first-order differential equations that is more general and accurate than most current sound propagation formulations. For application to three-dimensional problems of practical interest in battlefield acoustics, the code must be run on massively parallel computers. Some example computations involving sound propagation in a moving atmosphere and propagation in the presence of trees and barriers are presented.

More Details

Acoustic Wave Equations for a Linear Viscous Fluid and An Ideal Fluid

Aldridge, David F.

The mathematical description of acoustic wave propagation within a time- and space-varying, and moving, linear viscous fluid is formulated as a system of coupled linear equations. This system is rigorously developed from fundamental principles of continuum mechanics (conservation of mass, balance of linear and angular momentum, balance of entropy) and various constitutive relations (for stress, entropy production, and entropy conduction) by linearizing all expressions with respect to the small-amplitude acoustic wavefield variables. A significant simplification arises if the fluid medium is neither viscous nor heat conducting (i.e., an ideal fluid). In this case the mathematical system can be reduced to a set of five, coupled, first-order partial differential equations. Coefficients in the systems depend on various mechanical and thermodynamic properties of the ambient medium that supports acoustic wave propagation. These material properties cannot all be arbitrarily specified, but must satisfy another system of nonlinear expressions characterizing the dynamic behavior of the background medium. Dramatic simplifications in both systems occur if the ambient medium is simultaneously adiabatic and stationary.

More Details

Fast Grid Search Algorithm for Seismic Source Location

Aldridge, David F.

The spatial and temporal origin of a seismic energy source are estimated with a first grid search technique. This approach has greater likelihood of finding the global rninirnum of the arrival time misiit function compared with conventional linearized iterative methods. Assumption of a homogeneous and isotropic seismic velocity model allows for extremely rapid computation of predicted arrival times, but probably limits application of the method to certain geologic environments and/or recording geometries. Contour plots of the arrival time misfit function in the vicinity of the global minimum are extremely useful for (i) quantizing the uncertainty of an estimated hypocenter solution and (ii) analyzing the resolving power of a given recording configuration. In particular, simultaneous inversion of both P-wave and S-wave arrival times appears to yield a superior solution in the sense of being more precisely localized in space and time. Future research with this algorithm may involve (i) investigating the utility of nonuniform residual weighting schemes, (ii) incorporating linear and/or layered velocity models into the calculation of predicted arrival times, and (iii) applying it toward rational design of microseismic monitoring networks.

More Details
Results 51–64 of 64
Results 51–64 of 64