Publications

Results 176–200 of 215
Skip to search filters

Direct observation of spinlike reaction fronts in planar energetic multilayer foils

Applied Physics Letters

McDonald, Joel P.; Hodges, Vernon C.; Jones, E.D.; Adams, David P.

Propagating reactions in initially planar cobalt/aluminum exothermic multilayer foils have been investigated using high-speed digital photography. Real-time observations of reactions indicate that unsteady (spinlike) reaction propagation leads to the formation of highly periodic surface morphologies with length scales ranging from 1 μm to 1 mm. The characteristics of propagating spinlike reactions and corresponding reacted foil morphologies depend on the bilayer thickness of multilayer foils. © 2009 American Institute of Physics.

More Details

X-ray powder diffraction data for rhombohedral AlPt

Powder Diffraction

Rodriguez, Mark A.; Adams, David P.

X-ray powder diffraction data for a rhombohedral AlPt phase formed by self-propagating, high-temperature reactions of AlPt bi-layer films are reported. Multilayer AlPt thin film samples, reacted in air or vacuum, transformed into rhombohedral AlPt with space group R-3(148). Indexing and lattice parameter refinement of AlPt powders (generated from thin-film samples) yielded trigonal/hexagonal unit-cell lattice parameters of a=15.623(6) Å and c=5.305(2) Å, Z=39, and V=1121.5 Å3. © International Centre for Diffraction Data.

More Details

Bioagent detection using miniaturized NMR and nanoparticle amplification : final LDRD report

Alam, Todd M.; Adams, David P.; Williams, John D.; Fan, Hongyou F.

This LDRD program was directed towards the development of a portable micro-nuclear magnetic resonance ({micro}-NMR) spectrometer for the detection of bioagents via induced amplification of solvent relaxation based on superparamagnetic nanoparticles. The first component of this research was the fabrication and testing of two different micro-coil ({micro}-coil) platforms: namely a planar spiral NMR {micro}-coil and a cylindrical solenoid NMR {micro}-coil. These fabrication techniques are described along with the testing of the NMR performance for the individual coils. The NMR relaxivity for a series of water soluble FeMn oxide nanoparticles was also determined to explore the influence of the nanoparticle size on the observed NMR relaxation properties. In addition, The use of commercially produced superparamagnetic iron oxide nanoparticles (SPIONs) for amplification via NMR based relaxation mechanisms was also demonstrated, with the lower detection limit in number of SPIONs per nanoliter (nL) being determined.

More Details

The role of adhesion and fracture on the performance of nanostructured films

Adams, David P.

Nanostructured materials are the basis for emerging technologies, such as MEMS, NEMS, sensors, and flexible electronics, that will dominate near term advances in nanotechnology. These technologies are often based on devices containing layers of nanoscale polymer, ceramic and metallic films and stretchable interconnects creating surfaces and interfaces with properties and responses that differ dramatically from bulk counterparts. The differing properties can induce high interlaminar stresses that lead to wrinkling, delamination, and buckling in compression [1,2], and film fracture and decohesion in tension. [3] However, the relationships between composition, structure and properties, and especially adhesion and fracture, are not well-defined at the nanoscale. These relationships are critical to assuring performance and reliability of nanostructured materials and devices. They are also critical for building materials science based predictive models of structure and behavior.

More Details

Design and manufacturing of complex optics: the dragonfly eye optic

Gill, David D.; Sweatt, W.C.; Claudet, Andre C.; Hodges, Vernon C.; Adams, David P.

The ''Design and Manufacturing of Complex Optics'' LDRD sought to develop new advanced methods for the design and manufacturing of very complex optical systems. The project team developed methods for including manufacturability into optical designs and also researched extensions of manufacturing techniques to meet the challenging needs of aspherical, 3D, multi-level lenslet arrays on non-planar surfaces. In order to confirm the applicability of the developed techniques, the team chose the Dragonfly Eye optic as a testbed. This optic has arrays of aspherical micro-lenslets on both the exterior and the interior of a 4mm diameter hemispherical shell. Manufacturing of the dragonfly eye required new methods of plunge milling aspherical optics and the development of a method to create the milling tools using focused ion beam milling. The team showed the ability to create aspherical concave milling tools which will have great significance to the optical industry. A prototype dragonfly eye exterior was created during the research, and the methods of including manufacturability in the optical design process were shown to be successful as well.

More Details

Effects of evolving surface morphology on yield during focused ion beam milling of carbon

Proposed for publication in Applied Surface Science.

Adams, David P.; Mayer, T.M.; Archuleta, Kim A.

We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10{sup 17}-10{sup 19} ions/cm{sup 2}) and incidence angles ({Theta} = 0-80{sup o}). Carbon bombarded by 20 keV Ga{sup +} either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large {Theta}, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at {Theta} = 75{sup o}. Similar trends of decreasing yield are found for H{sub 2}O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

More Details
Results 176–200 of 215
Results 176–200 of 215