Publications

Results 51–75 of 215
Skip to search filters

A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits

Journal of Applied Physics

Kittell, David E.; Yarrington, Cole Y.; Hobbs, Michael L.; Abere, Michael J.; Adams, David P.

A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quench limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. This higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.

More Details

Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

Journal of Applied Physics

Yarrington, Cole Y.; Abere, Michael J.; Adams, David P.; Hobbs, Michael L.

Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm were irradiated with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm2 and 1189 W/cm2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. Videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse, while the shorter pulse shows uniform brightness. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model the progress from reactants to products at both pulse widths. The model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.

More Details
Results 51–75 of 215
Results 51–75 of 215