Publications

Results 51–100 of 215
Skip to search filters

A diffusion-limited reaction model for self-propagating Al/Pt multilayers with quench limits

Journal of Applied Physics

Kittell, David E.; Yarrington, Cole Y.; Hobbs, Michael L.; Abere, Michael J.; Adams, David P.

A diffusion-limited reaction model was calibrated for Al/Pt multilayers ignited on oxidized silicon, sapphire, and tungsten substrates, as well as for some Al/Pt multilayers ignited as free-standing foils. The model was implemented in a finite element analysis code and used to match experimental burn front velocity data collected from several years of testing at Sandia National Laboratories. Moreover, both the simulations and experiments reveal well-defined quench limits in the total Al + Pt layer (i.e., bilayer) thickness. At these limits, the heat generated from atomic diffusion is insufficient to support a self-propagating wave front on top of the substrates. Quench limits for reactive multilayers are seldom reported and are found to depend on the thermal properties of the individual layers. Here, the diffusion-limited reaction model is generalized to allow for temperature- and composition-dependent material properties, phase change, and anisotropic thermal conductivity. Utilizing this increase in model fidelity, excellent overall agreement is shown between the simulations and experimental results with a single calibrated parameter set. However, the burn front velocities of Al/Pt multilayers ignited on tungsten substrates are over-predicted. Possible sources of error are discussed and a higher activation energy (from 41.9 kJ/mol.at. to 47.5 kJ/mol.at.) is shown to bring the simulations into agreement with the velocity data observed on tungsten substrates. This higher activation energy suggests an inhibited diffusion mechanism present at lower heating rates.

More Details

Reactive nanolaminate pulsed-laser ignition mechanism: Modeling and experimental evidence of diffusion limited reactions

Journal of Applied Physics

Yarrington, Cole Y.; Abere, Michael J.; Adams, David P.; Hobbs, Michael L.

Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm were irradiated with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm2 and 1189 W/cm2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. Videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse, while the shorter pulse shows uniform brightness. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model the progress from reactants to products at both pulse widths. The model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.

More Details

Comparative shock response of additively manufactured versus conventionally wrought 304L stainless steel

AIP Conference Proceedings

Wise, Jack L.; Adams, David P.; Nishida, E.E.; Song, Bo S.; Maguire, M.C.; Carroll, Jay D.; Reedlunn, Benjamin R.; Bishop, Joseph E.; Palmer, T.A.

Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens that were machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology permits direct fabrication of net-or near-net-shape metal parts. For the present investigation, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for onedimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.0 GPa. The acquired waveprofile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. The possible contributions of various factors, such as composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and/or sample axis orientation relative to the additive manufacturing deposition trajectory, are considered to explain differences between the AM and baseline 304L dynamic material results.

More Details

Environmental resistance of oxide tags fabricated on 304L stainless steel via nanosecond pulsed laser irradiation

Surface and Coatings Technology

Lawrence, Samantha K.; Adams, David P.; Bahr, David F.; Moody, Neville R.

Nanosecond pulsed laser irradiation was used to fabricate colored, mechanically robust oxide "tags" on 304L stainless steel. Immersion in simulated seawater solution, salt fog exposure, and anodic polarization in a 3.5% NaCl solution were employed to evaluate the environmental resistance of these oxide tags. Single layer oxides outside a narrow thickness range (~100-150 nm) are susceptible to dissolution in chloride containing environments. The 304L substrates immediately beneath the oxides corrode severely-attributed to Cr-depletion in the melt zone during laser processing. For the first time, multilayered oxides were fabricated with pulsed laser irradiation in an effort to expand the protective thickness range while also increasing the variety of film colors attainable in this range. Layered films grown using a laser scan rate of 475 mm/s are more resistant to both localized and general corrosion than oxides fabricated at 550 mm/s. In the absence of pre-processing to mitigate Cr-depletion, layered films can enhance environmental stability of the system.

More Details

The Effect of Substrate Microstructure on the Heat-Affected Zone Size in Sn-Zn Alloys Due to Adjoining Ni-Al Reactive Multilayer Foil Reaction

Journal of Electronic Materials

Hooper, R.J.; Adams, David P.; Hirschfeld, Deidre H.; Manuel, M.V.

The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. In order to fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. Specifically, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. This can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within the heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.

More Details

The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

Applied Physics Letters

Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole Y.; Adams, David P.

Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.

More Details

Dynamic compressive response of wrought and additive manufactured 304L stainless steels

EPJ Web of Conferences

Nishida, E.E.; Song, Bo S.; Maguire, Michael C.; Adams, David P.; Carroll, Jay D.; Wise, Jack L.; Bishop, Joseph E.; Palmer, Todd

Additive manufacturing (AM) technology has been developed to fabricate metal components that include complex prototype fabrication, small lot production, precision repair or feature addition, and tooling. However, the mechanical response of the AM materials is a concern to meet requirements for specific applications. Differences between AM materials as compared to wrought materials might be expected, due to possible differences in porosity (voids), grain size, and residual stress levels. When the AM materials are designed for impact applications, the dynamic mechanical properties in both compression and tension need to be fully characterized and understood for reliable designs. In this study, a 304L stainless steel was manufactured with AM technology. For comparison purposes, both the AM and wrought 304L stainless steels were dynamically characterized in compression Kolsky bar techniques. They dynamic compressive stress-strain curves were obtained and the strain rate effects were determined for both the AM and wrought 304L stainless steels. A comprehensive comparison of dynamic compressive response between the AM and wrought 304L stainless steels was performed. SAND2015-0993 C.

More Details

Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

Adams, David P.; Hirschfeld, Deidre H.; Hooper, Ryan J.; Manuel, Michelle (.

Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.

More Details
Results 51–100 of 215
Results 51–100 of 215