Publications

Results 51–75 of 111
Skip to search filters

Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems

Serkland, Darwin K.; Chow, Weng W.; Geib, K.M.; Peake, Gregory M.

Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth: (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.

More Details

Feedback in close-coupled axial VCSEL-photodiode pairs

Proceedings of SPIE - The International Society for Optical Engineering

Geib, Kent M.; Serkland, Darwin K.; Peake, Gregory M.; Sanchez, Victoria M.

We have been investigating the use of coaxial multimode VCSEL/PD (vertical cavity surface emitting laser/photodiode) pairs for positional sensing with emitter to target mirror distances on the order of 1mm. We have observed large variations in signal levels due to the strong optical feedback in these close-coupled systems, employing either heterogeneously integrated commercial components or our own monolithically integrated devices. The feedback effect is larger than anticipated due to the annular geometry of the photodetector. Even though there is very little change in the measured VCSEL total output power, the optical feedback induces variations in the transverse mode distributions in these multimode VCSELs. The higher order modes have a larger divergence angle resulting in changes in the reflected light power incident upon the active detector area for a large range of emitter/mirror separations. We will review the experimental details and provide strategies for avoiding these variations in detected power. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

More Details

High-speed reflective S-SEEDs for photonic logic circuits

2009 International Conference on Photonics in Switching, PS '09

Keeler, Gordon A.; Serkland, Darwin K.; Overberg, Mark E.; Geib, K.M.; Gill, D.D.; Mukherjee, Sayan M.; Hsu, Alan Y.; Clevenger, Jascinda C.; Baiocchi, D.; Sweatt, W.C.

We demonstrate the operation of low-power reflective S-SEEDs with 6-ps switching times at a 2-Volt bias. Efficient refractive micro-optics are used to optically interconnect multiple S-SEED gates. The technology platform is expected to enable dense photonic logic circuits for high-speed telecommunications-related applications. © 2009 IEEE.

More Details

Growth, fabrication, and characterization of high-speed 1550-nm S-SEEDs for all-optical logic

ECS Transactions

Keeler, Gordon A.; Serkland, Darwin K.; Overberg, Mark E.; Klem, John F.; Geib, K.M.; Clevenger, Jascinda C.; Hsu, Alan Y.; Hadley, G.R.

We describe recent advances in the development of 1550-nm symmetric self-electrooptic effect devices (S-SEEDs). S-SEEDs are semiconductor optoelectronic devices used to implement ultrafast all-optical logic functions: for optical fiber communication applications. In this paper, basic S-SEED operation is described, followed by a detailed explanation of the optimization techniques used to improve DC and high-speed performance in these long wavelength devices. Both epitaxial strain and quantum well design are shown to be important for S-SEEDs grown in the InAlGaAs quaternary material system. The device fabrication approach is outlined, and DC electrical and optical performance is discussed. Finally, we describe the high-speed optoelectronic measurements used to determine S-SEED switching characteristics. The devices described herein are the first known S-SEEDs to operate at telecommunications- compatible wavelengths and demonstrate record switching speeds with rail-to-rail switching rates faster than 6 picoseconds. © The Electrochemical Society.

More Details

17 G directly modulated datacom VCSELs

2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS

Johnson, Ralph H.; Serkland, Darwin K.

The next generation 850 nm datacom VCSEL to go into production will be the 17 G VCSEL. It is not certain that direct modulation will be suitable given the reliability, supply voltage, and temperature range required. This paper is a first look at VCSELs designed and targeted for production 17 G use. The design is discussed and LIV and small signal frequency response is presented. © 2008 Optical Society of America.

More Details

Final report on LDRD project : advanced optical trigger systems

Serkland, Darwin K.; Mar, Alan M.; Geib, K.M.; Peake, Gregory M.; Roose, Lars D.; Keeler, Gordon A.; Hadley, G.R.; Loubriel, Guillermo M.; Sullivan, Charles T.

Advanced optically-activated solid-state electrical switch development at Sandia has demonstrated multi-kA/kV switching and the path for scalability to even higher current/power. Realization of this potential requires development of new optical sources/switches based on key Sandia photonic device technologies: vertical-cavity surface-emitting lasers (VCSELs) and photoconductive semiconductor switch (PCSS) devices. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been used to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. In VCSEL arrays, adjacent lasers utilize identical semiconductor material and are lithographically patterned to the required dimensions. We have demonstrated multiple-line filament triggering using VCSEL arrays to approximate line generation. These arrays of uncoupled circular-aperture VCSELs have fill factors ranging from 2% to 30%. Using these arrays, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices. Photoconductive semiconductor switch (PCSS) devices offer advantages of high voltage operation (multi-kV), optical isolation, triggering with laser pulses that cannot occur accidentally in nature, low cost, high speed, small size, and radiation hardness. PCSS devices are candidates for an assortment of potential applications that require multi-kA switching of current. The key to increasing the switching capacity of PCSS devices to 5kV/5kA and higher is to distribute the current in multiple parallel line filaments triggered by an array of high-brightness line-shaped illuminators. Commercial mechanically-stacked edge-emitting lasers have been demonstrated to trigger multiple filaments, but they are difficult to scale and manufacture with the required uniformity. As a promising alternative to multiple discrete edge-emitting lasers, a single wafer of vertical-cavity surface-emitting lasers (VCSELs) can be lithographically patterned to achieve the desired layout of parallel line-shaped emitters, in which adjacent lasers utilize identical semiconductor material and thereby achieve a degree of intrinsic optical uniformity. Under this LDRD project, we have fabricated arrays of uncoupled circular-aperture VCSELs to approximate a line-shaped illumination pattern, achieving optical fill factors ranging from 2% to 30%. We have applied these VCSEL arrays to demonstrate single and dual parallel line-filament triggering of PCSS devices. Moreover, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices using VCSEL arrays. We have found that reliable triggering of multiple filaments requires matching of the turn-on time of adjacent VCSEL line-shaped-arrays to within approximately 1 ns. Additionally, we discovered that reliable triggering of PCSS devices at low voltages requires more optical power than we obtained with our first generation of VCSEL arrays. A second generation of higher-power VCSEL arrays was designed and fabricated at the end of this LDRD project, and testing with PCSS devices is currently underway (as of September 2008).

More Details

Electronic/photonic interfaces for ultrafast data processing

Keeler, Gordon A.; Serkland, Darwin K.; Hsu, Alan Y.; Geib, K.M.; Overberg, Mark E.

This report summarizes a 3-month program that explored the potential areas of impact for electronic/photonic integration technologies, as applied to next-generation data processing systems operating within 100+ Gb/s optical networks. The study included a technology review that targeted three key functions of data processing systems, namely receive/demultiplexing/clock recovery, data processing, and transmit/multiplexing. Various technical approaches were described and evaluated. In addition, we initiated the development of high-speed photodetectors and hybrid integration processes, two key elements of an ultrafast data processor. Relevant experimental results are described herein.

More Details
Results 51–75 of 111
Results 51–75 of 111