Publications

Results 26–50 of 111
Skip to search filters

Frequency Noise of Silicon Nitride Optomechanical Oscillators with Integrated Waveguides

Grine, Alejandro J.; Grine, Alejandro J.; Serkland, Darwin K.; Serkland, Darwin K.; Wood, Michael G.; Wood, Michael G.; Soudachanh, Amy L.; Soudachanh, Amy L.; Hollowell, Andrew E.; Hollowell, Andrew E.; Koch, Lawrence K.; Koch, Lawrence K.; Hains, Christopher H.; Hains, Christopher H.; Siddiqui, Aleem M.; Siddiqui, Aleem M.; Eichenfield, Matthew S.; Eichenfield, Matthew S.; Dagel, Daryl D.; Dagel, Daryl D.; Grossetete, Grant G.; Grossetete, Grant G.; Matins, Benjamin M.; Matins, Benjamin M.

Abstract not provided.

Gigahertz speed operation of epsilon-near-zero silicon photonic modulators

Optica

Wood, Michael G.; Campione, Salvatore; Parameswaran, S.; Luk, Ting S.; Wendt, J.R.; Serkland, Darwin K.; Keeler, Gordon A.

Optical communication systems increasingly require electrooptical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 Vpp, we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.

More Details

Mode selection and tuning of single-frequency short-cavity VECSELs

Proceedings of SPIE - The International Society for Optical Engineering

Serkland, Darwin K.; So, Haley M.; Peake, Gregory M.; Wood, Michael G.; Grine, Alejandro J.; Hains, Christopher H.; Geib, Kent M.; Keeler, Gordon A.

We report on mode selection and tuning properties of vertical-external-cavity surface-emitting lasers (VECSELs) containing coupled semiconductor and external cavities of total length less than 1 mm. Our goal is to create narrowlinewidth (<1MHz) single-frequency VECSELs that operate near 850 nm on a single longitudinal cavity resonance and tune versus temperature without mode hops. We have designed, fabricated, and measured VECSELs with external-cavity lengths ranging from 25 to 800 μm. We compare simulated and measured coupled-cavity mode frequencies and discuss criteria for single mode selection.

More Details

Optomechanical spring effect readout in resonant micro-optical Sagnac gyroscopes design and scaling analysis

International Conference on Optical MEMS and Nanophotonics

Grine, Alejandro J.; Siddiqui, A.; Keeler, Gordon A.; Shaw, M.J.; Eichenfield, Matthew S.; Friedmann, Thomas A.; Douglas, Erica A.; Wood, M.G.; Dagel, D.J.; Hains, C.; Koch, L.F.; Nordquist, C.D.; Serkland, Darwin K.

We propose and theoretically analyze a new cavity optomechanical oscillator gyroscope. Mechanical frequency acts as a sensitive readout of rotation through the optomechanical spring and Sagnac effects. Remarkably, reducing device size improves scale factor.

More Details

Submicrometer Epsilon-Near-Zero Electroabsorption Modulators Enabled by High-Mobility Cadmium Oxide

IEEE Photonics Journal

Campione, Salvatore; Wood, Michael G.; Serkland, Darwin K.; Parameswaran, Sivasubramanian P.; Ihlefeld, Jon I.; Luk, Ting S.; Wendt, J.R.; Geib, Kent M.; Keeler, Gordon A.

Epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The nonresonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely, indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e., low loss) epsilon-near-zero materials such as CdO. In particular, we show that nonresonant electroabsorption modulators with submicron lengths and greater than 5 dB extinction ratios may be achieved through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.

More Details

Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Auden, E.C.; Vizkelethy, Gyorgy V.; Serkland, Darwin K.; Bossert, David B.; Doyle, Barney L.

The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al0.3Ga0.7As/GaAs/Al0.25Ga0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.

More Details

High-mobility transparent conducting oxides for compact epsilon-near-zero silicon integrated optical modulators

Optics InfoBase Conference Papers

Wood, Michael G.; Campione, Salvatore; Serkland, Darwin K.; Parameswaran, Sivasubramanian P.; Ihlefeld, Jon; Luk, Ting S.; Wendt, J.R.; Geib, Kent M.; Keeler, Gordon A.

We study the role of carrier mobility in transparent conducting oxides integrated into epsilon-near-zero modulators. High-mobility materials including CdO enable sub-micron length electroabsorption modulators through >4dB/μm extinction ratios.

More Details

VCSELs for interferometric readout of MEMS sensors

Proceedings of SPIE - The International Society for Optical Engineering

Serkland, Darwin K.; Geib, K.M.; Peake, Gregory M.; Keeler, Gordon A.; Shaw, Michael S.; Baker, Michael S.; Okandan, Murat

We report on the development of single-frequency VCSELs (vertical-cavity surface-emitting lasers) for sensing the position of a moving MEMS (micro-electro-mechanical system) object with resolution much less than 1nm. Position measurement is the basis of many different types of MEMS sensors, including accelerometers, gyroscopes, and pressure sensors. Typically, by switching from a traditional capacitive electronic readout to an interferometric optical readout, the resolution can be improved by an order of magnitude with a corresponding improvement in MEMS sensor performance. Because the VCSEL wavelength determines the scale of the position measurement, laser wavelength (frequency) stability is desirable. This paper discusses the impact of VCSEL amplitude and frequency noise on the position measurement.

More Details
Results 26–50 of 111
Results 26–50 of 111