Opportunity to Plan and Develop a Comprehensive US Arctic Research Infrastructure Network Hub at Oliktok Point Alaska
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The first solar hot air balloon was constructed in the early 1970s (Besset, 2016). Over the following decades the Centre National d'Etudes Spatiales (CNES) developed the Montgolfiere Infrarouge (MIR) balloon, which flew on solar power during the day and infrared radiation from the Earth's surface at night (Fommerau and Rougeron, 2011). The balloons were capable of flying for over 60 days and apparently reached altitudes of 30 km at least once (Malaterre, 1993). Solar balloons were the subject of a Jet Propulsion Laboratory study that performed test flights on Earth (Jones and Wu 1999) and discussed their mission potential for Mars, Jupiter, and Venus (Jones and Heun, 1997). The solar balloons were deployed from the ground and dropped from hot air balloons; some were altitude controlled by means of a remotely-commanded air valve at the top of the envelope. More recently, solar balloons have been employed for infrasound studies in the lower stratosphere (see Table 1). The program began in 2015, when a prototype balloon reached an altitude of 22 kilometers before terminating just prior to float (Bowman et al., 2015). An infrasound sensor was successfully deployed on a solar balloon during the 2016 SISE/USIE experiment, in which an acoustic signal from a ground explosion was captured at a range of 330 km (Anderson et al. 2018; Young et al. 2018). This led to the launch of a 5-balloon infrasound network during the Heliotrope experiment (Bowman and Albert, 2018). The balloons were constructed by the researchers themselves at a materials of less than $50 per envelope.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This monthly report is intended to communicate the status of North Slope ARM facilities managed by Sandia National Labs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This monthly report is intended to communicate the status of North Slope ARM facilities managed by Sandia National Labs.
Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements from tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This monthly report is intended to communicate the status of North Slope ARM facilities managed by Sandia National Labs.
Abstract not provided.