Publications

Results 26–50 of 56
Skip to search filters

Experimental measurements of thermal accommodation coefficients for microscale gas-phase heat transfer

Collection of Technical Papers - 39th AIAA Thermophysics Conference

Trott, Wayne T.; Rader, Daniel J.; Castaneda, Jaime N.; Torczynski, J.R.; Gallis, Michail A.

An experimental apparatus is described that measures gas-surface thermal accommodation coefficients from the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation coefficients are determined from the pressure dependence of the heat flux at a fixed plate separation. The apparatus is designed to conduct tests with a variety of gases in contact with interchangeable, well-characterized surfaces of various materials (e.g., metals, ceramics, semiconductors) with various surface finishes (e.g., smooth, rough). Experiments are reported for three gases (argon, nitrogen, and helium) in contact with pairs of 304 stainless steel plates prepared with one of two finishes: lathe-machined or mirror-polished. For argon and nitrogen, the measured accommodation coefficients for machined and polished plates are near unity and independent of finish to within experimental uncertainty. For helium, the accommodation coefficients are much lower and show a slight variation with surface roughness. Two different methods are used to determine the accommodation coefficient from experimental data: the Sherman-Lees formula and the GTR formula. These approaches yield values of 0.87 and 0.94 for argon, 0.80 and 0.86 for nitrogen, 0.36 and 0.38 for helium with the machined finish, and 0.40 and 0.42 for helium with the polished finish, respectively, with an uncertainty of ±0.02. The GTR values for argon and nitrogen are generally in better agreement with the results of other investigators than the Sherman-Lees values are, and both helium results are in reasonable agreement with values in the literature.

More Details

Noncontinuum gas-phase heat transfer from a heated microbeam to the adjacent substrate

American Society of Mechanical Engineers, Micro-Electro Mechanical Systems Division, (Publications) MEMS

Gallis, Michail A.; Torczynski, J.R.; Rader, Daniel J.; Bainbridge, Bruce L.

Noncontinuum gas-phase heat transfer in two microscale geometries is investigated using two computational methods. The motivation is microscale thermal actuation produced by heating-induced expansion of a near-substrate microbeam in air. The first geometry involves a 1-μm microgap filled with gas and bounded by parallel solid slabs. The second geometry involves a heated I-shaped microbeam 2 μm from the adjacent substrate, with gas in between. Two computational methods are applied. The Navier-Stokes slip-jump (NSSJ) method uses continuum heat transfer in the gas, with temperature jumps at boundaries to treat noncontinuum effects. The Direct Simulation Monte Carlo (DSMC) method uses computational molecules to simulate noncontinuum gas behavior accurately. For the microgap, the heat-flux values from both methods are in good agreement for all pressures and accommodation coefficients. For the microbeam, there is comparably good agreement except for cases with low pressures and near-unity accommodation coefficients. The causes of this discrepancy are discussed. Copyright © 2005 by ASME.

More Details

Measurements of thermal accommodation coefficients

Rader, Daniel J.; Trott, Wayne T.; Torczynski, J.R.; Castaneda, Jaime N.; Grasser, Thomas W.

A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

More Details

Modeling microscale heat transfer using Calore

Torczynski, J.R.; Wong, Chungnin C.; Piekos, Edward S.; Gallis, Michail A.; Rader, Daniel J.; Bainbridge, Bruce L.

Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

More Details
Results 26–50 of 56
Results 26–50 of 56