Publications

Results 26–50 of 202
Skip to search filters

Microsystem Enabled Photovoltaics

Nielson, Gregory N.; Cruz Campa, Jose L.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul J.; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric L.; Yang, Benjamin B.; Koleske, Daniel K.; Wierer, Jonathan J.; Miller, William K.; Elisberg, Brenton E.; Zamora, David J.; Luna, Ian L.; Saavedra, Michael P.; Alford, Charles A.; Ballance, Mark H.; Wiwi, Michael W.; Samora, S.; Chavez, Julie C.; Pipkin, Jennifer R.; Nguyen, Janet N.; Anderson, Ben A.; Gu, Tian G.; Agrawal, Gautum A.; Nelson, Jeffrey S.

Abstract not provided.

Influence of pH on the Quantum-Size-Controlled Photoelectrochemical Etching of Epitaxial InGaN Quantum Dots

Journal of Physical Chemistry C

Xiao, Xiaoyin; Lu, Ping L.; Fischer, Arthur J.; Coltrin, Michael E.; Wang, George T.; Koleske, Daniel K.; Tsao, Jeffrey Y.

Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN thin films into quantum dots with sizes controlled by the laser wavelength. Here, we investigate and elucidate the influence of solution pH on such quantum-size-controlled PEC etch process. We find that although a pH above 5 is often used for PEC etching of GaN-based materials, oxides (In2O3 and/or Ga2O3) form which interfere with quantum dot formation. At pH below 3, however, oxide-free QDs with self-terminated sizes can be successfully realized.

More Details

Electrically Injected UV-Visible Nanowire Lasers

Wang, George T.; Li, Changyi L.; Li, Qiming L.; Liu, Sheng L.; Wright, Jeremy B.; Brener, Igal B.; Luk, Ting S.; Chow, Weng W.; Leung, Benjamin L.; Figiel, J.J.; Koleske, Daniel K.; Lu, Tzu-Ming L.

There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.

More Details

Correlated high-resolution x-ray diffraction, photoluminescence, and atom probe tomography analysis of continuous and discontinuous InxGa1-xN quantum wells

Applied Physics Letters

Ren, Xiaochen; Riley, James R.; Koleske, Daniel K.; Lauhon, Lincoln J.

Atom probe tomography (APT) is used to characterize the influence of hydrogen dosing during GaN barrier growth on the indium distribution of InxGa1-xN quantum wells, and correlated micro-photoluminescence is used to measure changes in the emission spectrum and efficiency. Relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffraction analysis for more accurate nondestructive measurements of composition.

More Details

Photoelectrochemical etching of epitaxial InGaN thin films: Self-limited kinetics and nanostructuring

Electrochimica Acta

Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; Lu, Ping L.; Koleske, Daniel K.; Wang, George T.; Polsky, Ronen P.; Tsao, Jeffrey Y.

We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using a narrowband laser with a linewidth less than ∼1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale, and ultimately the self-limiting etch kinetics lead to an ensemble of nanoparticles. This change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.

More Details

Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers

Journal of Applied Physics

Armstrong, Andrew A.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel K.; Lee, Stephen R.; Wierer, Jonathan W.

The influence of a dilute InxGa1-xN (x ∼ 0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode (LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than the LED without an UL, while the radiative recombination rates were nearly identical. This suggests that the improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.

More Details

On the increased efficiency in InGaN-based multiple quantum wells emitting at 530-590 nm with AlGaN interlayers

Journal of Crystal Growth

Koleske, Daniel K.; Fischer, Arthur J.; Bryant, B.N.; Kotula, Paul G.; Wierer, J.J.

InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z∼0.38) IL is ∼1-2 nm thick, and is grown after and at the same growth temperature as the ∼3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ∼10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to ∼0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing nonradiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.

More Details

Quantum-size-controlled photoelectrochemical fabrication of epitaxial InGaN quantum dots

Nano Letters

Xiao, Xiaoyin; Fischer, Arthur J.; Wang, George T.; Lu, Ping L.; Koleske, Daniel K.; Coltrin, Michael E.; Wright, Jeremy B.; Liu, Sheng; Brener, Igal; Subramania, Ganapathi S.; Tsao, Jeffrey Y.

We demonstrate a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10 nm size regime: quantum-size-controlled photoelectrochemical (QSC-PEC) etching. We show that quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and that the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength. Low-temperature photoluminescence from ensembles of such QDs have peak wavelengths that can be tunably blue shifted by 35 nm (from 440 to 405 nm) and have line widths that narrow by 3 times (from 19 to 6 nm).

More Details
Results 26–50 of 202
Results 26–50 of 202