Publications

Results 51–100 of 182
Skip to search filters

Single-camera, single-shot, time-resolved laser-induced incandescence decay imaging

Optics Letters

Chen, Yi; Cenker, Emre; Richardson, Daniel R.; Kearney, S.P.; Halls, Benjamin R.; Skeen, Scott A.; Shaddix, Christopher R.; Guildenbecher, Daniel R.

Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.

More Details

Recent developments using background oriented schlieren with a plenoptic camera

RAPID 2018 - 2018 IEEE Research and Applications of Photonics In Defense Conference

Klemkowsky, Jenna N.; Clifford, Christopher J.; Thurow, Brian S.; Kunzler, William M.; Guildenbecher, Daniel R.

Plenoptic background oriented schlieren imaging has recently been introduced as a single-camera technique used to observe three-dimensional density gradients in a flow field. With the ability to generate focused BOS images, the signature of density gradients produced at different depth locations can be distinguished from one another. Two experiments demonstrate the capabilities of this technique. The first experiment visualized the rising plumes produced from two simple flames placed at different depths in a low magnification configuration. The second experiment used a high magnification configuration with long working distance to visualize shock waves in a 6.35 millimeter diameter underexpanded jet. These experiments demonstrate plenoptic BOS as a simple and convenient three-dimensional visualization technique that can be applied in facilities with limited optical access.

More Details

Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow

International Journal of Multiphase Flow

Chen, Yi; Wagner, Justin W.; Farias, Paul A.; DeMauro, Edward P.; Guildenbecher, Daniel R.

Liquid metal breakup processes are important for understanding a variety of physical phenomena including metal powder formation, thermal spray coatings, fragmentation in explosive detonations and metalized propellant combustion. Since the breakup behaviors of liquid metals are not well studied, we experimentally investigate the roles of higher density and fast elastic surface oxide formation on breakup morphology and droplet characteristics. This work compares the column breakup of water with Galinstan, a room-temperature eutectic liquid metal alloy of gallium, indium and tin. A shock tube is used to generate a step change in convective velocity and back-lit imaging is used to classify morphologies for Weber numbers up to 250. Digital in-line holography (DIH) is then used to quantitatively capture droplet size, velocity and three-dimensional position information. Differences in geometry between canonical spherical drops and the liquid columns utilized in this paper are likely responsible for observations of earlier transition Weber numbers and uni-modal droplet volume distributions. Scaling laws indicate that Galinstan and water share similar droplet size-velocity trends and root-normal volume probability distributions. However, measurements indicate that Galinstan breakup occurs earlier in non-dimensional time and produces more non-spherical droplets due to fast oxide formation.

More Details

Volumetric calibration of a plenoptic camera

Applied Optics

Munz, Elise D.; Fahringer, Timothy W.; Guildenbecher, Daniel R.; Thurow, Brian S.

Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

More Details

Backscatter particle image velocimetry via optical time-of-flight sectioning

Optics Letters

Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle P.; Guildenbecher, Daniel R.

Conventional particle image velocimetry (PIV) configurations require a minimum of two optical access ports, inherently restricting the technique to a limited class of flows. Here, the development and application of a novel method of backscattered time-gated PIV requiring a single-optical-access port is described along with preliminary results. The light backscattered from a seeded flow is imaged over a narrow optical depth selected by an optical Kerr effect (OKE) time gate. The picosecond duration of the OKE time gate essentially replicates the width of the laser sheet of conventional PIV by limiting detected photons to a narrow time-of-flight within the flow. Thus, scattering noise from outside the measurement volume is eliminated. This PIV via the optical time-of-flight sectioning technique can be useful in systems with limited optical access and in flows near walls or other scattering surfaces.

More Details

Phase conjugate digital inline holography (PCDIH)

Optics Letters

Guildenbecher, Daniel R.; Guildenbecher, Daniel R.; hoffmeister, kathryn h.; Kunzler, William M.; Richardson, Daniel R.; Kearney, Sean P.

We report digital inline holography (DIH) provides instantaneous three-dimensional (3D) measurements of diffracting objects; however, phase disturbances in the beam path can distort the imaging. In this Letter, a phase conjugate digital inline holography (PCDIH) configuration is proposed for removal of phase disturbances. Brillouin-enhanced four-wave mixing produces a phase conjugate signal that back propagates along the DIH beam path. Finally, the results demonstrate the removal of distortions caused by gas-phase shocks to recover 3D images of diffracting objects.

More Details

Agglomerate sizing in aluminized propellants using digital inline holography and traditional diagnostics

Journal of Propulsion and Power

Powell, Michael S.; Gunduz, Ibrahim W.; Shang, Weixiao; Chen, Jun; Son, Steven F.; Chen, Yi; Guildenbecher, Daniel R.

Aluminized ammonium perchlorate composite propellants can form large molten agglomerated particles that may result in poor combustion performance, slag accumulation, and increased two-phase flow losses. Quantifying agglomerate size distributions are needed to gain an understanding of agglomeration dynamics and ultimately design new propellants for improved performance. Due to complexities of the reacting multiphase environment, agglomerate size diagnostics are difficult and measurement accuracies are poorly understood. To address this, the current work compares three agglomerate sizing techniques applied to two propellant formulations. Particle collection on a quench plate and backlit videography are two relatively common techniques, whereas digital inline holography is an emerging alternative for three-dimensional measurements. Atmospheric pressure combustion results show that all three techniques are able to capture the qualitative trends; however, significant differences exist in the quantitative size distributions and mean diameters. For digital inline holography, methods are proposed that combine temporally resolved high-speed recording with lower-speed but higher spatial resolution measurements to correct for size- velocity correlation biases while extending the measurable size dynamic range. The results from this work provide new guidance for improved agglomerate size measurements along with statistically resolved datasets for validation of agglomerate models.

More Details

PIVOTS: A novel method of performing time gated particle image velocimetry

Optics InfoBase Conference Papers

Paciaroni, Megan E.; Chen, Yi; Lynch, Kyle P.; Guildenbecher, Daniel R.

Backscatter Particle Image Velocimetry via Optical Time-of-flight Sectioning (PIVOTS) is a novel method of performing PIV in situations where conventional PIV presents difficulties. The PIVOTS technique is introduced along with recent applications and results.

More Details

Time-resolved digital in-line holography and pyrometry for aluminized solid rocket propellants

Optics InfoBase Conference Papers

Chen, Yi; Heyborne, Jeffery D.; Guildenbecher, Daniel R.

Combustion of aluminum droplets in solid rocket propellants is studied using laser diagnostic techniques. The time-resolved droplet velocity, temperature, and size are measured using high speed digital in-line holography and imaging pyrometry at 20 kHz.

More Details

Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics

Guildenbecher, Daniel R.; Munz, Elise D.

Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

More Details

Volumetric calibration of a plenoptic camera

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Munz, Elise D.; Fahringer, Timothy W.; Thurow, Brian S.; Guildenbecher, Daniel R.

Due to the increasing prevalence of plenoptic imaging it is necessary to explore the volumetric calibration of this imaging system to correct for inaccuracies due to real world lens distortions and thin lens assumptions in current processing methods. An overview of plenoptic imaging is given and methods of volumetric calibration of a plenoptic camera based on a polynomial mapping function are presented. The accuracy and feasibility of these methods are examined. Preliminary results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy. Depth accuracy of particle location in calibrated volumes was measured to be accurate within 1% of the calculated volume size.

More Details

Aerodynamic breakup and secondary drop formation for a liquid metal column in a shock-induced cross-flow

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Chen, Yi; DeMauro, Edward P.; Wagner, Justin W.; Arienti, Marco A.; Guildenbecher, Daniel R.; Farias, Paul A.; Grasser, Thomas W.; Sanderson, Patrick D.; Albert, Samuel W.; Turpin, Aaron M.; Sealy, William; Ketchum, Remington S.

The breakup of liquid metals is of relevance to powder formation, thermal spray coatings, liquid metal cooling systems, investigations of accident scenarios, and model validation. In this work, a column of liquid Galinstan, a room-temperature liquid metal alloy, is studied in a shock-induced cross-flow. Backlit experiments are used to characterize breakup morphology and digital in-line holography is used to quantitatively measure the size and speed of secondary droplets. Two-dimensional simulations are also developed in order to help understand the underlying mechanisms that drive breakup behavior. Results show that although breakup morphologies are similar for water and Galinstan at the same Weber number, the breakup distance, secondary droplet size, and secondary droplet shapes differ. Evidence indicates that secondary droplet formation may be related to the Weber number, density ratio, the convective velocity and other effects.

More Details

Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry

Combustion and Flame

Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N.; Cooper, Marcia A.; Stauffacher, Howard L.; Oliver, Michael S.; Washburn, Ephraim B.

The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. This work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. In addition, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. Using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collected at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.

More Details
Results 51–100 of 182
Results 51–100 of 182