Launch Safety ? Mars 2020 Mission
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report provides two sets of calculations not presented in previous reports on the technical feasibility of spent nuclear fuel (SNF) disposal directly in dual-purpose canisters (DPCs): 1) thermal calculations for reference disposal concepts using larger 37-PWR size DPC-based waste packages, and 2) analysis and thermal calculations for underground vault-type storage and eventual disposal of DPCs. The reader is referred to the earlier reports (Hardin et al. 2011, 2012, 2013; Hardin and Voegele 2013) for contextual information on DPC direct disposal alternatives.
Abstract not provided.
Nuclear and Emerging Technologies for Space, NETS 2015
In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. One option for the rover on the proposed spacecraft uses a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. NASA has prepared an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act. The EIS includes information on the risks of mission accidents to the general public and on-site workers at the launch complex. The Nuclear Risk Assessment (NRA) addresses the responses of the MMRTG option to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks of the MMRTG option for the EIS. This paper provides a summary of the methods and results used in the NRA.
Transactions of the American Nuclear Society
Abstract not provided.
Abstract not provided.
Abstract not provided.