Publications

Results 76–100 of 126
Skip to search filters

Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

Geophysical Research Letters

Bowman, Daniel B.; Lees, J.M.

Colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode described here may have heated the thermosphere by several Kelvins per day while the source persisted. We suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.

More Details

Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors

Geophysical Research Letters

Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon H.; Bowman, Daniel B.

We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.

More Details

Trans Atlantic Infrasound Payload (TAIP) Operation Plan

Bowman, Daniel B.; Lees, Jonathan L.

The Carolina Infrasound package, added as a piggyback to the 2016 ULDB ight, recorded unique acoustic signals such as the ocean microbarom and a large meteor. These data both yielded unique insights into the acoustic energy transfer from the lower to the upper atmosphere as well as highlighted the vast array of signals whose origins remain unknown. Now, the opportunity to y a payload across the north Atlantic offers an opportunity to sample one of the most active ocean microbarom sources on Earth. Improvements in payload capabilities should result in characterization of the higher frequency range of the stratospheric infrasound spectrum as well. Finally, numerous large mining and munitions disposal explosions in the region may provide \ground truth" events for assessing the detection capability of infrasound microphones in the stratosphere. The flight will include three different types of infrasound sensors. One type is a pair of polarity reversed InfraBSU microphones (standard for high altitude flights since 2016), another is a highly sensitive Chaparral 60 modified for a very low corner period, and the final sensor is a lightweight, low power Gem infrasound package. By evaluating these configurations against each other on the same flight, we will be able to optimize future campaigns with different sensitivity and mass constraints.

More Details

The gem infrasound logger and custom-built instrumentation

Seismological Research Letters

Anderson, Jacob F.; Johnson, Jeffrey B.; Bowman, Daniel B.; Ronan, Timothy J.

We have designed, built, and recorded data with a custom infrasound logger (referred to as the Gem) that is inexpensive, portable, and easy to use. We describe its design process, qualities, and applications in this article. Field instrumentation is a key element of geophysical data collection, and the quantity and quality of data that can be recorded is determined largely by the characteristics of the instruments used. Geophysicists tend to rely on commercially available instruments, which suffice for many important types of fieldwork. However, commercial instrumentation can fall short in certain roles, which motivates the development of custom sensors and data loggers. In particular, we found existing data loggers to be expensive and inconvenient for infrasound campaigns, and developed the Gem infrasound logger in response. In this article, we discuss development of this infrasound logger and the various uses found for it, including projects on volcanoes, high-Altitude balloons, and rivers. Further, we demonstrate that when needed, scientists can feasibly design and build their own specialized instruments, and that doing so can enable them to record more and better data at a lower cost.

More Details

Tethered Aerostat Effects on Nearby Seismometers

Bowman, Daniel B.

This report assesses seismic interference generated by a tethered aerostat. The study was motivated by a planned aerostat deployment within the footprint of the Dry Alluvium Geology seismic network. No evidence was found for seismic interference generated by the aerostat, and thus the e ects on the Dry Alluvium Geology sensors will be negligible.

More Details
Results 76–100 of 126
Results 76–100 of 126