Publications

Results 26–50 of 63
Skip to search filters

Design and laser damage properties of a dichroic beam combiner coating for 22.5-deg incidence and S polarization with high transmission at 527 nm and high reflection at 1054 nm

Optical Engineering

Bellum, John C.; Field, Ella S.; Kletecka, Damon E.; Rambo, Patrick K.; Smith, Ian C.

We designed a dichroic beam combiner coating with 11 HfO2/SiO2 layer pairs and deposited it on a large substrate. It provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for a 22.5-deg angle of incidence (AOI), S polarization (Spol), and uses near half-wave layer thicknesses for HT at 527 nm, modified for HR at 1054 nm. The two options for the beam combiner each require that a high intensity beam be incident on the coating from within the substrate (from glass). We analyze the laser-induced damage threshold (LIDT) differences between the two options in terms of the 527- and 1054-nm E-field behaviors for air → coating and glass → coating incidences. This indicates that LIDTs should be higher for air → coating than for glass → coating incidence. LIDT tests at the use AOI, Spol with ns pulses at 532 and 1064 nm confirm this, with glass → coating LIDTs about half that of air → coating LIDTs. Lastly, these results clearly indicate that the best beam combiner option is for the high intensity 527 and 1054 nm beams to be incident on the coating from air and glass, respectively.

More Details

Laser damage comparisons of broad-bandwidth, high-reflection optical coatings containing TiO2, Nb2O5, or Ta2O5 high-index layers

Optical Engineering

Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

Broad bandwidth coatings allow angle of incidence flexibility and accommodate spectral shifts due to aging and water absorption. Higher refractive index materials in optical coatings, such as TiO2, Nb2O5, and Ta2O5, can be used to achieve broader bandwidths compared to coatings that contain HfO2 high index layers. We have identified the deposition settings that lead to the highest index, lowest absorption layers of TiO2, Nb2O5, and Ta2O5, via e-beam evaporation using ion-assisted deposition. We paired these high index materials with SiO2 as the low index material to create broad bandwidth high reflection coatings centered at 1054 nm for 45 deg angle of incidence and P polarization. Furthermore, high reflection bandwidths as large as 231 nm were realized. Laser damage tests of these coatings using the ISO 11254 and NIF-MEL protocols are presented, which revealed that the Ta2O5/SiO2 coating exhibits the highest resistance to laser damage, at the expense of lower bandwidth compared to the TiO2/SiO2 and Nb2O5/SiO2 coatings.

More Details

Low group delay dispersion optical coating for broad bandwidth high reflection at 45° Incidence, P polarization of femtosecond pulses with 900 nm center wavelength

Coatings

Bellum, John C.; Field, Ella S.; Winstone, Trevor B.; Kletecka, Damon E.

We describe an optical coating design suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of femtosecond (fs) laser pulses whose wavelengths range from 800 to 1000 nm. Our design process is guided by quarter-wave HR coating properties. The design must afford low group delay dispersion (GDD) for reflected light over the broad, 200 nm bandwidth in order to minimize temporal broadening of the fs pulses due to dispersive alteration of relative phases between their frequency components. The design should also be favorable to high laser-induced damage threshold (LIDT). We base the coating on TiO 2 /SiO 2 layer pairs produced by means of e-beam evaporation with ion-assisted deposition, and use OptiLayer Thin Film Software to explore designs starting with TiO 2 /SiO 2 layers having thicknesses in a reverse chirped arrangement. This approach led to a design with R > 99% from 800 to 1000 nm and GDD < 20 fs 2 from 843 to 949 nm (45° AOI, Ppol). The design's GDD behaves in a smooth way, suitable for GDD compensation techniques, and its electric field intensities show promise for high LIDTs. Reflectivity and GDD measurements for the initial test coating indicate good performance of the BBHR design. Subsequent coating runs with improved process calibration produced two coatings whose HR bands satisfactorily meet the design goals. For the sake of completeness, we summarize our previously reported transmission spectra and LIDT test results with 800 ps, 8 ps and 675 fs pulses for these two coatings, and present a table of the LIDT results we have for all of our TiO 2 /SiO 2 BBHR coatings, showing the trends with test laser pulse duration from the ns to sub-ps regimes.

More Details

Sandia's Z-Backlighter Laser Facility

Proceedings of SPIE - The International Society for Optical Engineering

Rambo, P.; Schwarz, Jens S.; Schollmeier, Marius; Geissel, Matthias G.; Smith, Ian C.; Kimmel, Mark W.; Speas, C.; Shores, Jonathon S.; Armstrong, Darrell J.; Bellum, J.; Field, E.; Kletecka, Damon E.; Porter, John L.

The Z-Backlighter Laser Facility at Sandia National Laboratories was developed to enable high energy density physics experiments in conjunction with the Z Pulsed Power Facility at Sandia National Laboratories, with an emphasis on backlighting. Since the first laser system there became operational in 2001, the facility has continually evolved to add new capability and new missions. The facility currently has several high energy laser systems including the nanosecond/multi-kilojoule Z-Beamlet Laser (ZBL), the sub-picosecond/kilojoule-class Z-Petawatt (ZPW) Laser, and the smaller nanosecond/100 J-class Chaco laser. In addition to these, the backlighting mission requires a regular stream of coated consumable optics such as debris shields and vacuum windows, which led to the development of the Sandia Optics Support Facility to support the unique high damage threshold optical coating needs described.

More Details

Analysis of laser damage tests on a coating for broad bandwidth high reflection of femtosecond pulses

Proceedings of SPIE - The International Society for Optical Engineering

Bellum, John C.; Winstone, Trevor; Lamaignere, Laurent; Sozet, Martin; Kimmel, Mark W.; Rambo, Patrick K.; Field, Ella S.; Kletecka, Damon E.

We have designed and produced an optical coating suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of petawatt (PW) class fs laser pulses of ∼ 900 nm center wavelength. We have produced such BBHR coatings consisting of TiO2/SiO2 layer pairs deposited by ion assisted e-beam evaporation using the large optics coater at Sandia National Laboratories. This paper focuses on laser-induced damage threshold (LIDT) tests of these coatings. LIDT is difficult to measure for such coatings due to the broad range of wavelengths over which they can operate. An ideal test would be in the vacuum environment of the fs-pulse PW use laser using fs pulses identical to of the PW laser. Short of this ideal testing would be tests over portions of the HR band of the BBHR coating using ns or sub-ps pulses produced by tunable lasers. Such tests could be over ∼ 10 nm wide wavelength intervals whose center wavelengths could be tuned over the BBHR coating's operational band. Alternatively, the HR band of the BBHR coating could be adjusted by means of wavelength shifts due to changing the AOI of the LIDT tests or due to absorbed moisture by the coating under ambient conditions. We conduct LIDT tests on the BBHR coatings at selected AOIs to gain insight into the coatings' laser damage properties, and analyze how the results of the different LIDT tests compare.

More Details

Design and laser damage properties of a dichroic beam combiner coating for 22.5° incidence and S polarization with high-transmission at 527nm and high-reflection at 1054nm

Proceedings of SPIE - The International Society for Optical Engineering

Bellum, John C.; Field, Ella S.; Kletecka, Damon E.; Rambo, Patrick K.; Smith, Ian C.

We have designed a dichroic beam combiner coating consisting of 11 HfO2/SiO2 layer pairs deposited on a large fused silica substrate. The coating provides high transmission (HT) at 527 nm and high reflection (HR) at 1054 nm for light at 22.5° angle of incidence (AOI) in air in S polarization (Spol). The coating's design is based on layers of near half-wave optical thickness in the design space for stable HT at 527 nm, with layer modifications that provide HR at 1054 nm while preserving HT at 527 nm. Its implementation in the 527 nm/1054 nm dual wavelength beam combiner arrangement has two options, with each option requiring one or the other of the high intensity beams to be incident on the dichroic coating from within the substrate (from glass). We show that there are differences between the two options with respect to the laser-induced damage threshold (LIDT) properties of the coating, and analyze the differences in terms of the 527 nm and 1054 nm E-field intensity behaviors for air → coating and glass → coating incidence. Our E-field analysis indicates that LIDTs for air → coating incidence should be higher than for glass → coating incidence. LIDT measurements for Spol at the use AOI with ns pulses at 532 nm and 1064 nm confirm this analysis with the LIDTs for glass → coating incidence being about half those for air → coating incidence at both wavelengths. These LIDT results and the E-field analysis clearly indicate that the best beam combiner option is the one for which the high intensity 527 nm beam is incident on the coating from air and the 1054 nm high intensity beam is incident on the coating from glass.

More Details

How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO2/SiO2 antireflection and high-reflection coatings

Proceedings of SPIE - The International Society for Optical Engineering

Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out of commission. In light of this circumstance, we decided to explore how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45° angle of incidence (AOI), in P-polarization (P-pol).

More Details
Results 26–50 of 63
Results 26–50 of 63