Publications

Results 51–100 of 118
Skip to search filters

Improving the Cycling Life of Aluminum and Germanium Thin Films for use as Anodic Materials in Li-Ion Batteries

Hudak, Nicholas H.; Huber, Dale L.; Gulley, Gerald G.

The cycling of high-capacity electrode materials for lithium-ion batteries results in significant volumetric expansion and contraction, and this leads to mechanical failure of the electrodes. To increase battery performance and reliability, there is a drive towards the use of nanostructured electrode materials and nanoscale surface coatings. As a part of the Visiting Faculty Program (VFP) last summer, we examined the ability of aluminum oxide and gold film surface coatings to improve the mechanical and cycling properties of vapor-deposited aluminum films in lithium-ion batteries. Nanoscale gold coatings resulted in significantly improved cycling behavior for the thinnest aluminum films whereas aluminum oxide coatings did not improve the cycling behavior of the aluminum films. This summer we performed a similar investigation on vapor-deposited germanium, which has an even higher theoretical capacity per unit mass than aluminum. Because the mechanism of lithium-alloying is different for each electrode material, we expected the effects of coating the germanium surface with aluminum oxide or gold to differ significantly from previous observations. Indeed, we found that gold coatings gave only small or negligible improvements in cycling behavior of germanium films, but aluminum oxide (Al2O3) coatings gave significant improvements in cycling over the range of film thicknesses tested.

More Details

Non-resonant Nanoscale Extreme Light Confinement

Subramania, Ganapathi S.; Huber, Dale L.

A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and field enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].

More Details

Conceptual designs of 300-TW and 800-TW pulsed-power accelerators

Stygar, William A.; Fowler, William E.; Gomez, Matthew R.; Harmon, Roger L.; Herrmann, Mark H.; Huber, Dale L.; Hutsel, Brian T.; Bailey, James E.; Jones, Michael J.; Jones, Peter A.; Leckbee, Joshua L.; Lee, James R.; Lewis, Scot A.; Long, Finis W.; Lopez, Mike R.; Lucero, Diego J.; Matzen, M.K.; Mazarakis, Michael G.; McBride, Ryan D.; McKee, George R.; Nakhleh, Charles N.; Owen, Albert C.; Rochau, G.A.; Savage, Mark E.; Schwarz, Jens S.; Sefkow, Adam B.; Sinars, Daniel S.; Stoltzfus, Brian S.; Vesey, Roger A.; Wakeland, P.; Cuneo, M.E.; Flicker, Dawn G.; Focia, Ronald J.

Abstract not provided.

Thermally programmable pH buffers

ACS Applied Materials and Interfaces

Van Gough, Dara; Bunker, B.C.; Roberts, Mark E.; Huber, Dale L.; Zarick, Holly F.; Austin, Mariah J.; Wheeler, Jill S.; Moore, Diana; Spoerke, Erik D.

Many reactions in both chemistry and biology rely on the ability to precisely control and fix the solution concentrations of either protons or hydroxide ions. In this report, we describe the behavior of thermally programmable pH buffer systems based on the copolymerization of varying amounts of acrylic acid (AA) groups into N-isopropylacrylamide polymers. Because the copolymers undergo phase transitions upon heating and cooling, the local environment around the AA groups can be reversibly switched between hydrophobic and hydrophilic states affecting the ionization behavior of the acids. Results show that moderate temperature variations can be used to change the solution pH by two units. However, results also indicate that the nature of the transition and its impact on the pH values are highly dependent on the AA content and the degree of neutralization. © 2012 American Chemical Society.

More Details

Aqueous synthesis and electrical properties of nano-crystalline PLZT capacitors

DiAntonio, Christopher D.; Monson, Todd M.; Chavez, Tom C.; Stevens, Tyler E.; Roesler, Alexander R.; Huber, Dale L.

Devices with nano-crystalline microstructures have been shown to possess improved electrical properties. Further advantages include lower processing temperatures; however, device fabrication from nano-particles poses several challenges. This presentation describes a novel aqueous synthesis technique to produce large batch sizes with minimal waste. The precipitate is readily converted at less than 550 C to a phase pure, nano-crystalline Pb{sub 0.88} La{sub 0.12}(Zr{sub 0.70} Ti{sub 0.30}){sub 0.97} O{sub 3} powder. Complications and solutions to sample fabrication from nano-powders are discussed, including the use of glass sintering aids to improve density and further lower sintering temperatures. Finally, electrical properties are presented to demonstrate the potential benefits of nano-crystalline capacitors.

More Details

Nano-crystalline PLZT for dielectric applications

DiAntonio, Christopher D.; Monson, Todd M.; Roesler, Alexander R.; Huber, Dale L.; Chavez, Tom C.; Stevens, Tyler E.

Nano-materials have shown unique crystallite-dependent properties that present distinct advantages for dielectric applications. PLZT is an excellent dielectric material used in several applications and may benefit crystallite engineering; however complex systems such as PLZT require well-controlled synthesis techniques. An aqueous based synthesis route has been developed, using standard precursor chemicals and scalable techniques to produce large batch sizes. The synthesis will be briefly covered, followed by a more in-depth discussion of incorporating nanocrystalline PLZT into a working device. Initial electrical properties will be presented illustrating the potential benefits and associated difficulties of working with PLZT nano-materials.

More Details

Development of low-cost, compact, reliable, high energy density ceramic nanocomposite capacitors

Monson, Todd M.; DiAntonio, Christopher D.; Winter, Michael R.; Huber, Dale L.; Roesler, Alexander R.; Chavez, Tom C.; Stevens, Tyler E.; Vreeland, Erika C.

The ceramic nanocomposite capacitor goals are: (1) more than double energy density of ceramic capacitors (cutting size and weight by more than half); (2) potential cost reductino (factor of >4) due to decreased sintering temperature (allowing the use of lower cost electrode materials such as 70/30 Ag/Pd); and (3) lower sintering temperature will allow co-firing with other electrical components.

More Details

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries

ECS Transactions

Hudak, N.S.; Huber, Dale L.

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum. ©The Electrochemical Society.

More Details

Microencapsulation of concentrated sulfuric acid with an epoxy vinyl ester shell

Sandia journal manuscript; Not yet accepted for publication

Schneider, Duane A.; Huber, Dale L.

Microencapsulation is the process of placing a shell composed of a synthetic or biological polymer completely around another chemical for the purpose of delaying or slowing its release. We report that Sandia National Laboratories was interested in microencapsulating concentrated sulfuric for a specific application. Historically, acids have been encapsulated many times using various techniques. However, the encapsulation of mineral acids has proven difficult due to the lack of a shell material robust enough to prevent premature leakage of the capsule. Using the Polymer-Polymer Incompatibility (PPI) technique, we screened a variety of shell materials and found our best results were with Derakane® 411-350, an epoxy vinyl ester resin (EVER) polymer.

More Details
Results 51–100 of 118
Results 51–100 of 118