Publications

Results 26–50 of 111
Skip to search filters

Improved infrared detection using nanoantennas

International Conference on Optical MEMS and Nanophotonics

Peters, D.W.; Sinclair, Michael B.; Goldflam, Michael G.; Warne, Larry K.; Campione, Salvatore; Kim, Jin K.; Davids, Paul D.; Tauke-Pedretti, Anna; Wendt, J.R.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian P.; Coon, W.T.; Keeler, G.A.; Fortune, Torben R.

We examine integration of a patterned metal nanoantenna (or metasurface) directly onto long-wave infrared detectors. These structures show significantly improved external quantum efficiency compared to their traditional counterparts. We will show simulation and experimental results.

More Details

Vacuum radiometry of an infrared nanoantenna-coupled tunnel diode rectenna

International Conference on Optical MEMS and Nanophotonics

Davids, Paul D.; Kadlec, Emil A.; Shank, Joshua S.; Peters, D.W.; Howell, Stephen W.

We examine the vacuum infrared photoresponse of a large-area nanoantenna-coupled tunnel diode rectenna resulting from thermal radiation from a temperature controlled heater. The measured infrared photocurrent is obtained as a function of the source temperature, sample distance and view factor. Far-field radiation power conversion is examined using standard radiometric techniques and correlated with the rectified current response.

More Details

Resonantly enhanced infrared detectors based on type-II superlattice absorbers

Goldflam, Michael G.; Goldflam, Michael G.; Campione, Salvatore; Campione, Salvatore; Kadlec, Emil A.; Kadlec, Emil A.; Hawkins, Samuel D.; Hawkins, Samuel D.; Coon, Wesley T.; Coon, Wesley T.; Fortune, Torben R.; Fortune, Torben R.; Parameswaran, Sivasubramanian P.; Parameswaran, Sivasubramanian P.; Keeler, Gordon A.; Keeler, Gordon A.; Klem, John F.; Klem, John F.; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Shaner, Eric A.; Shaner, Eric A.; Davids, Paul D.; Davids, Paul D.; Warne, Larry K.; Warne, Larry K.; Wendt, J.R.; Wendt, J.R.; Kim, Jin K.; Kim, Jin K.; Peters, D.W.; Peters, D.W.

Abstract not provided.

Next-generation infrared focal plane arrays for high-responsivity low-noise applications

IEEE Aerospace Conference Proceedings

Goldflam, Michael G.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian P.; Tauke-Pedretti, Anna; Warne, Larry K.; Peters, D.W.; Campione, Salvatore; Coon, W.T.; Keeler, Gordon A.; Shaner, Eric A.; Wendt, J.R.; Kadlec, Emil A.; Fortune, Torben R.; Klem, John F.; Davids, Paul D.; Kim, Jin K.

High-quality infrared focal plane arrays (FPAs) are used in many satellite, astronomical, and terrestrial applications. These applications require highly-sensitive, low-noise FPAs, and therefore do not benefit from advances made in low-cost thermal imagers where reducing cost and enabling high-temperature operation drive device development. Infrared detectors used in FPAs have been made for decades from alloys of mercury cadmium telluride (MCT). These infrared detectors are nearing the believed limit of their performance. This limit, known in the infrared detector community as Rule 07, dictates the dark current floor for MCT detectors, in their traditional architecture, for a given temperature and cutoff wavelength. To overcome the bounds imposed by Rule 07, many groups are working on detector compounds other than MCT. We focus on detectors employing III-V-based gallium-free InAsSb superlattice active regions while also changing the basic architecture of the pixel to improve signal-to-noise. Our architecture relies on a resonant, metallic, subwavelength nanoantenna patterned on the absorber surface, in combination with a Fabry-Pérot cavity, to couple the incoming radiation into tightly confined modes near the nanoantenna. This confinement of the incident energy in a thin layer allows us to greatly reduce the volume of the absorbing layer to a fraction of the free-space wavelength, yielding a corresponding reduction in dark current from spontaneously generated electron-hole pairs in the absorber material. This architecture is detector material agnostic and could be applied to MCT detector structures as well, although we focus on using superlattice antimonide-based detector materials. This detector concept has been applied to both mid-wave (3-5 μm) and longwave (8-12 μm) infrared detectors and absorbers. Here we examine long-wave devices, as these detectors currently have a larger gap between desired device performance and that of currently existing detectors. The measured structures show an external quantum efficiency exceeding 50%. We present a comparison of the modeled and measured photoresponse of these detectors and compare these detectors to currently available commercial detectors using relevant metrics such as external quantum efficiency. We also discuss modeling of crosstalk between adjacent pixels and its influence on the potential for a dual-wavelength detector. Finally, we evaluate potential advances in these detectors that may occur in the near future.

More Details

Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

Optics Express

Goldflam, Michael G.; Fei, Zhe; Ruiz, Isaac R.; Howell, Stephen W.; Davids, Paul D.; Peters, D.W.; Beechem, Thomas E.

We have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectricdependent. These simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength and wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.

More Details

Simulations of realistic multifunctional nanoantenna enabled detectors

2017 International Applied Computational Electromagnetics Society Symposium - Italy, ACES 2017

Campione, Salvatore; Warne, Larry K.; Jorgenson, Roy E.; Davids, Paul D.; Peters, D.W.

The goal of this paper is to investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We realize a 2×2 pixelated array structure that supports two wavelengths of operation. After designing each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array, we construct a supercell made of a 2×2 pixelated array with periodic boundary conditions mimicking the full NED. In the NED, each pixel comprises 10-20 nanoantennas. Our simulations account for the cross-talk between contiguous pixels. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. We want to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.

More Details

Dynamic Wavelength-Tunable Photodetector Using Subwavelength Graphene Field-Effect Transistors

Scientific Reports

Leonard, Francois L.; Spataru, Dan C.; Goldflam, Michael G.; Peters, D.W.; Beechem, Thomas E.

Dynamic wavelength tunability has long been the holy grail of photodetector technology. Because of its atomic thickness and unique properties, graphene opens up new paradigms to realize this concept, but so far this has been elusive experimentally. Here we employ detailed quantum transport modeling of photocurrent in graphene field-effect transistors (including realistic electromagnetic fields) to show that wavelength tunability is possible by dynamically changing the gate voltage. We reveal the phenomena that govern the behavior of this type of device and show significant departure from the simple expectations based on vertical transitions. We find strong focusing of the electromagnetic fields at the contact edges over the same length scale as the band-bending. Both of these spatially-varying potentials lead to an enhancement of non-vertical optical transitions, which dominate even in the absence of phonon or impurity scattering. We also show that the vanishing density of states near the Dirac point leads to contact blocking and a gate-dependent modulation of the photocurrent. Several of the effects discussed here should be applicable to a broad range of one-and two-dimensional materials and devices.

More Details

Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional Nanoantenna-Coupled Tunnel Diode

Physical Review Applied

Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew L.; Peters, D.W.; Davids, Paul D.

The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

More Details

Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

Applied Physics Letters

Goldflam, Michael G.; Kadlec, Emil A.; Olson, B.V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian P.; Coon, W.T.; Keeler, Gordon A.; Fortune, Torben R.; Tauke-Pedretti, Anna; Wendt, J.R.; Shaner, Eric A.; Davids, Paul D.; Kim, Jin K.; Peters, D.W.

We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

More Details
Results 26–50 of 111
Results 26–50 of 111