Highly-scalable branch and bound for maximum monomial agreement
Abstract not provided.
Abstract not provided.
Mathematical Programming Computation
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in ACM Transactions on Sensor Networks.
Abstract not provided.
Abstract not provided.
Decision makers increasingly rely on large-scale computational models to simulate and analyze complex man-made systems. For example, computational models of national infrastructures are being used to inform government policy, assess economic and national security risks, evaluate infrastructure interdependencies, and plan for the growth and evolution of infrastructure capabilities. A major challenge for decision makers is the analysis of national-scale models that are composed of interacting systems: effective integration of system models is difficult, there are many parameters to analyze in these systems, and fundamental modeling uncertainties complicate analysis. This project is developing optimization methods to effectively represent and analyze large-scale heterogeneous system of systems (HSoS) models, which have emerged as a promising approach for describing such complex man-made systems. These optimization methods enable decision makers to predict future system behavior, manage system risk, assess tradeoffs between system criteria, and identify critical modeling uncertainties.
Abstract not provided.
World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress
We consider the design of a sensor network to serve as an early warning system against a potential suite of contamination incidents. Given any measure for evaluating the quality of a sensor placement, there are two ways to model the objective. One is to minimize the impact or damage to the network, the other is to maximize the reduction in impact compared to the network without sensors. These objectives are the same when the problem is solved optimally. But when given equally-good approximation algorithms for each of this pair of complementary objectives, either one might be a better choice. The choice generally depends upon the quality of the approximation algorithms, the impact when there are no sensors, and the number of sensors available. We examine when each objective is better than the other by examining multiple real world networks. When assuming perfect sensors, minimizing impact is frequently superior for virulent contaminants. But when there are long response delays, or it is very difficult to reduce impact, maximizing impact reduction may be better. © 2011 ASCE.
World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability - Proceedings of the 2011 World Environmental and Water Resources Congress
A commonly used indicator of water quality is the amount of residual chlorine in a water distribution system. Chlorine booster stations are often utilized to maintain acceptable levels of residual chlorine throughout the network. In addition, hyper-chlorination has been used to disinfect portions of the distribution system following a pipe break. Consequently, it is natural to use hyper-chlorination via multiple booster stations located throughout a network to mitigate consequences and decontaminate networks after a contamination event. Many researchers have explored different methodologies for optimally locating booster stations in the network for daily operations. In this research, the problem of optimally locating chlorine booster stations to decontaminate following a contamination incident will be described. © 2011 ASCE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.
Abstract not provided.
In a (future) quantum computer a single logical quantum bit (qubit) will be made of multiple physical qubits. These extra physical qubits implement mandatory extensive error checking. The efficiency of error correction will fundamentally influence the performance of a future quantum computer, both in latency/speed and in error threshold (the worst error tolerated for an individual gate). Executing this quantum error correction requires scheduling the individual operations subject to architectural constraints. Since our last talk on this subject, a team of researchers at Sandia National Labortories has designed a logical qubit architecture that considers all relevant architectural issues including layout, the effects of supporting classical electronics, and the types of gates that the underlying physical qubit implementation supports most naturally. This is a two-dimensional system where 2-qubit operations occur locally, so there is no need to calculate more complex qubit/information transportation. Using integer programming, we found a schedule of qubit operations that obeys the hardware constraints, implements the local-check code in the native gate set, and minimizes qubit idle periods. Even with an optimal schedule, however, parallel Monte Carlo simulation shows that there is no finite error probability for the native gates such that the error-correction system would be benecial. However, by adding dynamic decoupling, a series of timed pulses that can reverse some errors, we found that there may be a threshold. Thus finding optimal schedules for increasingly-refined scheduling problems has proven critical for the overall design of the logical qubit system. We describe the evolving scheduling problems and the ideas behind the integer programming-based solution methods. This talk assumes no prior knowledge of quantum computing.
Abstract not provided.
We consider the problem of placing sensors in a municipal water network when we can choose both the location of sensors and the sensitivity and specificity of the contamination warning system. Sensor stations in a municipal water distribution network continuously send sensor output information to a centralized computing facility, and event detection systems at the control center determine when to signal an anomaly worthy of response. Although most sensor placement research has assumed perfect anomaly detection, signal analysis software has parameters that control the tradeoff between false alarms and false negatives. We describe a nonlinear sensor placement formulation, which we heuristically optimize with a linear approximation that can be solved as a mixed-integer linear program. We report the results of initial experiments on a real network and discuss tradeoffs between early detection of contamination incidents, and control of false alarms.
Large relational datasets such as national-scale social networks and power grids present different computational challenges than do physical simulations. Sandia's distributed-memory supercomputers are well suited for solving problems concerning the latter, but not the former. The reason is that problems such as pattern recognition and knowledge discovery on large networks are dominated by memory latency and not by computation. Furthermore, most memory requests in these applications are very small, and when the datasets are large, most requests miss the cache. The result is extremely low utilization. We are unlikely to be able to grow out of this problem with conventional architectures. As the power density of microprocessors has approached that of a nuclear reactor in the past two years, we have seen a leveling of Moores Law. Building larger and larger microprocessor-based supercomputers is not a solution for informatics and network infrastructure problems since the additional processors are utilized to only a tiny fraction of their capacity. An alternative solution is to use the paradigm of massive multithreading with a large shared memory. There is only one instance of this paradigm today: the Cray MTA-2. The proposal team has unique experience with and access to this machine. The XMT, which is now being delivered, is a Red Storm machine with up to 8192 multithreaded 'Threadstorm' processors and 128 TB of shared memory. For many years, the XMT will be the only way to address very large graph problems efficiently, and future generations of supercomputers will include multithreaded processors. Roughly 10 MTA processor can process a simple short paths problem in the time taken by the Gordon Bell Prize-nominated distributed memory code on 32,000 processors of Blue Gene/Light. We have developed algorithms and open-source software for the XMT, and have modified that software to run some of these algorithms on other multithreaded platforms such as the Sun Niagara and Opteron multi-core chips.
Abstract not provided.
Abstract not provided.
Abstract not provided.
World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008
Placing sensors in municipal water networks to protect against a set of contamination events is a classic p-median problem for most objectives when we assume that sensors are perfect. Many researchers have proposed exact and approximate solution methods for this p-median formulation. For full-scale networks with large contamination event suites, one must generally rely on heuristic methods to generate solutions. These heuristics provide feasible solutions, but give no quality guarantee relative to the optimal placement. In this paper we apply a Lagrangian relaxation method in order to compute lower bounds on the expected impact of suites of contamination events. In all of our experiments with single objectives, these lower bounds establish that the GRASP local search method generates solutions that are provably optimal to to within a fraction of a percentage point. Our Lagrangian heuristic also provides good solutions itself and requires only a fraction of the memory of GRASP. We conclude by describing two variations of the Lagrangian heuristic: an aggregated version that trades off solution quality for further memory savings, and a multi-objective version which balances objectives with additional goals. © 2008 ASCE.
Proposed for publication in the Proceedings of the National Academy of Sciences.
Communities of vertices within a giant network such as the World-Wide-Web are likely to be vastly smaller than the network itself. However, Fortunato and Barthelemy have proved that modularity maximization algorithms for community detection may fail to resolve communities with fewer than {radical} L/2 edges, where L is the number of edges in the entire network. This resolution limit leads modularity maximization algorithms to have notoriously poor accuracy on many real networks. Fortunato and Barthelemy's argument can be extended to networks with weighted edges as well, and we derive this corollary argument. We conclude that weighted modularity algorithms may fail to resolve communities with fewer than {radical} W{epsilon}/2 total edge weight, where W is the total edge weight in the network and {epsilon} is the maximum weight of an inter-community edge. If {epsilon} is small, then small communities can be resolved. Given a weighted or unweighted network, we describe how to derive new edge weights in order to achieve a low {epsilon}, we modify the 'CNM' community detection algorithm to maximize weighted modularity, and show that the resulting algorithm has greatly improved accuracy. In experiments with an emerging community standard benchmark, we find that our simple CNM variant is competitive with the most accurate community detection methods yet proposed.
2008 5th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems, MASS 2008
We propose scalable models and centralized heuristics for the concurrent and coordinated movement of multiple sinks in a wireless sensor network (WSN). The proposed centralized heuristic runs in polynomial time given the solution to the linear program and achieves results that are within 2% of the LP-relaxation-based upper bound. It provides a useful benchmark for evaluating centralized and distributed schemes for controlled sink mobility. © 2008 IEEE.
World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008
We present the TEVA-SPOT Toolkit, a sensor placement optimization tool developed within the USEPA TEVA program. The TEVA-SPOT Toolkit provides a sensor placement framework that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of its key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems. © 2008 ASCE.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
The practical utility of optimization technologies is often impacted by factors that reflect how these tools are used in practice, including whether various real-world constraints can be adequately modeled, the sophistication of the analysts applying the optimizer, and related environmental factors (e.g. whether a company is willing to trust predictions from computational models). Other features are less appreciated, but of equal importance in terms of dictating the successful use of optimization. These include the scale of problem instances, which in practice drives the development of approximate solution techniques, and constraints imposed by the target computing platforms. End-users often lack state-of-the-art computers, and thus runtime and memory limitations are often a significant, limiting factor in algorithm design. When coupled with large problem scale, the result is a significant technological challenge. We describe our experience developing and deploying both exact and heuristic algorithms for placing sensors in water distribution networks to mitigate against damage due intentional or accidental introduction of contaminants. The target computing platforms for this application have motivated limited-memory techniques that can optimize large-scale sensor placement problems. © 2008 Springer Berlin Heidelberg.
Abstract not provided.
Abstract not provided.
INFORMS Interfaces Journal
Abstract not provided.
Abstract not provided.
Algorithmica
Abstract not provided.
Abstract not provided.