Publications

Results 51–100 of 239
Skip to search filters

Compressive sensing adaptation for polynomial chaos expansions

Journal of Computational Physics

Tsilifis, Panagiotis; Huan, Xun H.; Safta, Cosmin S.; Sargsyan, Khachik S.; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, H.N.; Ghanem, Roger G.

Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.

More Details

Enhancing model predictability for a scramjet using probabilistic learning on manifolds

AIAA Journal

Soize, Christian; Ghanem, Roger; Safta, Cosmin S.; Huan, Xun H.; Vane, Zachary P.; Oefelein, Joseph C.; Lacaze, Guilhem; Najm, H.N.

The computational burden of a large-eddy simulation for reactive flows is exacerbated in the presence of uncertainty in flow conditions or kinetic variables. A comprehensive statistical analysis, with a sufficiently large number of samples, remains elusive. Statistical learning is an approach that allows for extracting more information using fewer samples. Such procedures, if successful, will greatly enhance the predictability of models in the sense of improving exploration and characterization of uncertainty due to model error and input dependencies, all while being constrained by the size of the associated statistical samples. In this paper, it is shown how a recently developed procedure for probabilistic learning on manifolds can serve to improve the predictability in a probabilistic framework of a scramjet simulation. The estimates of the probability density functions of the quantities of interest are improved together with estimates of the statistics of their maxima. It is also demonstrated how the improved statistical model adds critical insight to the performance of the model.

More Details

Enhancing statistical moment calculations for stochastic Galerkin solutions with Monte Carlo techniques

Journal of Computational Physics

Chowdhary, Kenny; Safta, Cosmin S.; Najm, H.N.

In this work, we provide a method for enhancing stochastic Galerkin moment calculations to the linear elliptic equation with random diffusivity using an ensemble of Monte Carlo solutions. This hybrid approach combines the accuracy of low-order stochastic Galerkin and the computational efficiency of Monte Carlo methods to provide statistical moment estimates which are significantly more accurate than performing each method individually. The hybrid approach involves computing a low-order stochastic Galerkin solution, after which Monte Carlo techniques are used to estimate the residual. We show that the combined stochastic Galerkin solution and residual is superior in both time and accuracy for a one-dimensional test problem and a more computational intensive two-dimensional linear elliptic problem for both the mean and variance quantities.

More Details

Interatomic Potentials Models for Cu-Ni and Cu-Zr Alloys

Safta, Cosmin S.; Geraci, Gianluca G.; Eldred, Michael S.; Najm, H.N.; Riegner, David R.; Windl, Wolfgang W.

This study explores a Bayesian calibration framework for the RAMPAGE alloy potential model for Cu-Ni and Cu-Zr systems, respectively. In RAMPAGE potentials, it is proposed that once calibrated potentials for individual elements are available, the inter-species interac- tions can be described by fitting a Morse potential for pair interactions with three parameters, while densities for the embedding function can be scaled by two parameters from the elemen- tal densities. Global sensitivity analysis tools were employed to understand the impact each parameter has on the MD simulation results. A transitional Markov Chain Monte Carlo al- gorithm was used to generate samples from the multimodal posterior distribution consistent with the discrepancy between MD simulation results and DFT data. For the Cu-Ni system the posterior predictive tests indicate that the fitted interatomic potential model agrees well with the DFT data, justifying the basic RAMPAGE assumtions. For the Cu-Zr system, where the phase diagram suggests more complicated atomic interactions than in the case of Cu-Ni, the RAMPAGE potential captured only a subset of the DFT data. The resulting posterior distri- bution for the 5 model parameters exhibited several modes, with each mode corresponding to specific simulation data and a suboptimal agreement with the DFT results.

More Details

Chance-constrained economic dispatch with renewable energy and storage

Computational Optimization and Applications

Cheng, Jianqiang; Chen, Richard L.; Najm, H.N.; Pinar, Ali P.; Safta, Cosmin S.; Watson, Jean-Paul W.

Increasing penetration levels of renewables have transformed how power systems are operated. High levels of uncertainty in production make it increasingly difficulty to guarantee operational feasibility; instead, constraints may only be satisfied with high probability. We present a chance-constrained economic dispatch model that efficiently integrates energy storage and high renewable penetration to satisfy renewable portfolio requirements. Specifically, we require that wind energy contribute at least a prespecified proportion of the total demand and that the scheduled wind energy is deliverable with high probability. We develop an approximate partial sample average approximation (PSAA) framework to enable efficient solution of large-scale chance-constrained economic dispatch problems. Computational experiments on the IEEE-24 bus system show that the proposed PSAA approach is more accurate, closer to the prescribed satisfaction tolerance, and approximately 100 times faster than standard sample average approximation. Finally, the improved efficiency of our PSAA approach enables solution of a larger WECC-240 test system in minutes.

More Details

Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin S.; Sargsyan, Khachik S.; Geraci, Gianluca G.; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem L.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. These difficulties are addressed in this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying them in the current study to large-eddy simulations of a jet in crossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system’s stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. Finally, these methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details

Global sensitivity analysis and estimation of model error, toward uncertainty quantification in scramjet computations

AIAA Journal

Huan, Xun H.; Safta, Cosmin S.; Geraci, Gianluca G.; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem M.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress toward optimal engine designs requires accurate flow simulations together with uncertainty quantification. However, performing uncertainty quantification for scramjet simulations is challenging due to the large number of uncertainparameters involvedandthe high computational costofflow simulations. These difficulties are addressedin this paper by developing practical uncertainty quantification algorithms and computational methods, and deploying themin the current studyto large-eddy simulations ofajet incrossflow inside a simplified HIFiRE Direct Connect Rig scramjet combustor. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, which can help reduce the system's stochastic dimension. Second, because models of different fidelity are used in the overall uncertainty quantification assessment, a framework for quantifying and propagating the uncertainty due to model error is presented. These methods are demonstrated on a nonreacting jet-in-crossflow test problem in a simplified scramjet geometry, with parameter space up to 24 dimensions, using static and dynamic treatments of the turbulence subgrid model, and with two-dimensional and three-dimensional geometries.

More Details

UQTk Version 3.0.4 User Manual

Sargsyan, Khachik S.; Safta, Cosmin S.; Chowdhary, Kamaljit S.; Castorena, Sarah C.; de Bord, Sarah d.; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.4 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details

Bayesian calibration of terrestrial ecosystem models: A study of advanced Markov chain Monte Carlo methods

Biogeosciences

Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin S.; Munger, William

Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.

More Details

Uncertainty quantification toolkit (UQTk)

Handbook of Uncertainty Quantification

Debusschere, Bert D.; Sargsyan, Khachik S.; Safta, Cosmin S.; Chowdhary, Kenny

The UQ Toolkit (UQTk) is a collection of tools for uncertainty quantification, ranging from intrusive and nonintrusive forward propagation of uncertainty to inverse problems and sensitivity analysis. This chapter first outlines the UQTk design philosophy, followed by an overview of the available methods and the way they are implemented in UQTk. The second part of this chapter is a detailed example that illustrates a UQ workflow from surrogate construction, and calibration, to forward propagation and attribution.

More Details

UQTk Version 3.0.3 User Manual

Sargsyan, Khachik S.; Safta, Cosmin S.; Chowdhary, Kamaljit S.; Castorena, Sarah C.; de Bord, Sarah d.; Debusschere, Bert D.

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.3 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sen- sitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

More Details
Results 51–100 of 239
Results 51–100 of 239