Publications

Results 151–159 of 159
Skip to search filters

Low work function material development for the microminiature thermionic converter

King, Donald B.; King, Donald B.; Zavadil, Kevin R.; Jennison, Dwight R.; Battaile, Corbett C.; Marshall, Albert C.

Thermionic energy conversion in a miniature format shows potential as a viable, high efficiency, micro to macro-scale power source. A microminiature thermionic converter (MTC) with inter-electrode spacings on the order of microns has been prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes that can be integrated into these converters to increase power production at modest temperatures (800 - 1300 K). The electrode materials are not well understood and the electrode thermionic properties are highly sensitive to manufacturing processes. Advanced theoretical, modeling, and fabrication capabilities are required to achieve optimum performance for MTC diodes. This report describes the modeling and fabrication efforts performed to develop micro dispenser cathodes for use in the MTC.

More Details

Microstructure and Reliability of Surface Micromachined Polysilicon Used for MEMS

American Society of Mechanical Engineers, Micro-Electromechanical Systems Division Publication (MEMS)

Buchheit, Thomas E.; Battaile, Corbett C.; Michael, Joseph R.; Boyce, Brad B.

Surface micromachining (SMM) techniques produce complex microscale polysilicon features on the surface of a silicon wafer using a patterned multilayer film deposition process. Failure characteristics of SMM polysilicon obtained from testing series of 2 μm and 4 μm wide ligaments fabricated using standard SMM processing techniques, fit a Weibull distribution, suggesting a behavior governed by a distribution of flaws, similar to brittle ceramic materials. However, positive identification of critical flaws that dictate the failure distributions within the ligaments remains unclear. Likely candidates are flaws associated with surface roughness or grain boundary intersections within the polysilicon microstructure. To address the possible connection between microstructure and failure behavior of SMM polysilicon, templates based on observed polysilicon microstructure were subjected to deformation simulations using polycrystal elasticity modeling. Series of simulations were performed to capture the statistical failure response of polysilicon due to local elastically driven stress concentrations between grains with different crystallographic orientations. Simulated results are presented and discussed in the context of experimental failure data.

More Details

Making the Connection Between Microstructure and Mechanics

Holm, Elizabeth A.; Holm, Elizabeth A.; Battaile, Corbett C.; Fang, H.E.; Buchheit, Thomas E.; Wellman, Gerald W.

The purpose of microstructural control is to optimize materials properties. To that end, they have developed sophisticated and successful computational models of both microstructural evolution and mechanical response. However, coupling these models to quantitatively predict the properties of a given microstructure poses a challenge. This problem arises because most continuum response models, such as finite element, finite volume, or material point methods, do not incorporate a real length scale. Thus, two self-similar polycrystals have identical mechanical properties regardless of grain size, in conflict with theory and observations. In this project, they took a tiered risk approach to incorporate microstructure and its resultant length scales in mechanical response simulations. Techniques considered include low-risk, low-benefit methods, as well as higher-payoff, higher-risk methods. Methods studied include a constitutive response model with a local length-scale parameter, a power-law hardening rate gradient near grain boundaries, a local Voce hardening law, and strain-gradient polycrystal plasticity. These techniques were validated on a variety of systems for which theoretical analyses and/or experimental data exist. The results may be used to generate improved constitutive models that explicitly depend upon microstructure and to provide insight into microstructural deformation and failure processes. Furthermore, because mechanical state drives microstructural evolution, a strain-enhanced grain growth model was coupled with the mechanical response simulations. The coupled model predicts both properties as a function of microstructure and microstructural development as a function of processing conditions.

More Details

Materials Issues for Micromachines Development - ASCI Program Plan

Fang, H.E.; Miller, Samuel L.; Dugger, Michael T.; Prasad, Somuri V.; Reedy, Earl D.; Thompson, Aidan P.; Wong, Chungnin C.; Yang, Pin Y.; Battaile, Corbett C.; Battaile, Corbett C.; Benavides, Gilbert L.; Ensz, M.T.; Buchheit, Thomas E.; Chen, Er-Ping C.; Christenson, Todd R.; De Boer, Maarten P.

This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.

More Details

Computational methods for coupling microstructural and micromechanical materials response simulations

Holm, Elizabeth A.; Wellman, Gerald W.; Battaile, Corbett C.; Buchheit, Thomas E.; Fang, H.E.; Rintoul, Mark D.; Glass, Sarah J.; Knorovsky, Gerald A.; Neilsen, Michael K.

Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

More Details
Results 151–159 of 159
Results 151–159 of 159