Detonation Corner Turning in Vapor-Deposited Explosives Using the Micromushroom Test
Abstract not provided.
Abstract not provided.
Physical Review B
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
Al/Pt nanolaminates with a bilayer thickness (tb, width of an Al/Pt pair-layer) of 164 nm were irradiated with single laser pulses with durations of 10 ms and 0.5 ms at 189 W/cm2 and 1189 W/cm2, respectively. The time to ignition was measured for each pulse, and shorter ignition times were observed for the higher power/shorter pulse width. Videographic images of the irradiated area shortly after ignition show a non-uniform radial brightness for the longer pulse, while the shorter pulse shows uniform brightness. A diffusion-limited single step reaction mechanism was implemented in a finite element package to model the progress from reactants to products at both pulse widths. The model captures well both the observed ignition delay and qualitative observations regarding the non-uniform radial temperature.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combustion Theory and Modelling
A physically-based form of the Mie–Grüneisen equation of state (EOS) is derived for calculating 1d planar shock temperatures, as well as hot spot temperature distributions from heterogeneous impact simulations. This form utilises a multi-term Einstein oscillator model for specific heat, and is completely algebraic in terms of temperature, volume, an integrating factor, and the cold curve energy. Moreover, any empirical relation for the reference pressure and energy may be substituted into the equations via the use of a generalised reference function. The complete EOS is then applied to calculations of the Hugoniot temperature and simulation of hydrodynamic pore collapse using data for the secondary explosive, hexanitrostilbene (HNS). From these results, it is shown that the choice of EOS is even more significant for determining hot spot temperature distributions than planar shock states. The complete EOS is also compared to an alternative derivation assuming that specific heat is a function of temperature alone, i.e. cv(T). Temperature discrepancies on the order of 100–600 K were observed corresponding to the shock pressures required to initiate HNS (near 10 GPa). Overall, the results of this work will improve confidence in temperature predictions. By adopting this EOS, future work may be able to assign physical meaning to other thermally sensitive constitutive model parameters necessary to predict the shock initiation and detonation of heterogeneous explosives.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.