Previous research has provided strong evidence that CO2 and H2O gasification reactions can provide non-negligible contributions to the consumption rates of pulverized coal (pc) char during combustion, particularly in oxy-fuel environments. Fully quantifying the contribution of these gasification reactions has proven to be difficult, due to the dearth of knowledge of gasification rates at the elevated particle temperatures associated with typical pc char combustion processes, as well as the complex interaction of oxidation and gasification reactions. Gasification reactions tend to become more important at higher char particle temperatures (because of their high activation energy) and they tend to reduce pc oxidation due to their endothermicity (i.e. cooling effect). The work reported here attempts to quantify the influence of the gasification reaction of CO2 in a rigorous manner by combining experimental measurements of the particle temperatures and consumption rates of size-classified pc char particles in tailored oxy-fuel environments with simulations from a detailed reacting porous particle model. The results demonstrate that a specific gasification reaction rate relative to the oxidation rate (within an accuracy of approximately +/- 20% of the pre-exponential value), is consistent with the experimentally measured char particle temperatures and burnout rates in oxy-fuel combustion environments. Conversely, the results also show, in agreement with past calculations, that it is extremely difficult to construct a set of kinetics that does not substantially overpredict particle temperature increase in strongly oxygen-enriched N2 environments. This latter result is believed to result from deficiencies in standard oxidation mechanisms that fail to account for falloff in char oxidation rates at high temperatures.
With the anticipated growth in hydrogen generation and use as part of a broad shift in energy use away from fossil fuels, concerns have been raised regarding the impact of increased H2 emissions on global warming. Atmospheric scientists have long recognized that H2 emissions into the atmosphere do have an indirect impact on global warming, largely because a portion of emitted H2 is consumed by the hydroxyl radical (OH), which is the primary reactant that removes the potent greenhouse gas methane from the atmosphere. Therefore, increases in H2 emissions will result in decreases in the average OH concentrations in the atmosphere and an increase in the atmospheric lifetime of methane. Various assessments of the impact of H2 emissions on global warming have been performed over the past couple of decades. These assessments have yielded significant variability and recognized uncertainty in the magnitude of the warming effect of a given quantity of emitted H2, and an even greater uncertainty in the magnitude of H2 leakage and releases that can be anticipated with an expanded H2 infrastructure. Consequently, definitive estimates of the magnitude of the warming effect of additional emitted H2 are lacking. However, given the current understanding of the warming potential of emitted H2 and given reasonable expectations of the emission rate of an expanded H2 infrastructure, it is anticipated that warming effects from emitted H2 will offset no more than 5% of the reduction in warming associated with avoided CO2 emissions from using clean H2. Further, it is highly unlikely that the warming effects from emitted H2 will offset more than 10% of the benefit from avoided CO2 emissions, at least as considered over a typical 100-year accounting period. Because of the short atmospheric lifetimes of H2 and methane, however, the warming effect of emitted H2 is enhanced over the first few years following increases in H2 emission.
Laser-induced incandescence (LII) is a widely used technique for measuring soot concentrations. For flame applications LII is frequently deployed as a planar diagnostic to measure the two-dimensional soot field. However, when the laser sheet is focused, as is typical to reach the requisite laser fluence level and achieve good spatial resolution, the complex laser power dependence of the LII signal generation process can introduce a large variation in LII signal sensitivity across an LII image. In this work, this effect is quantified for the first time as a function of laser pulse fluence, using a typical planar LII excitation scheme with a clipped Gaussian YAG laser beam focused with a 1 m focal length lens. Furthermore, the cross-sectional energy distribution in the laser sheet was measured across the image plane, to relate the details of the laser sheet focal properties with the resultant LII behavior. The results show that a unique laser fluence level (referenced to the focal plane) exists whereby there is essentially no dependence of LII signal on position relative to the focal plane. However, at lower or higher fluences, the radial signals either decrease (low fluence) or increase (high fluence) rapidly with increasing distance away from the focal point. For measurements using an LII 'plateau' laser fluence level, as is usual in environments with significant optical depth (i.e. sufficiently strong soot levels), the LII signals are found to be 2.5X larger 40 mm away from the focal point. An analysis conducted by combining a previously measured LII fluence dependence for a top-hat laser profile with the laser sheet cross-sections measured in this work shows general agreement with the measured results for LII signal variation. Further, the sensitivity of LII signals at high fluences to the laser beam spatial profile, particularly away from the sheet focus, is highlighted.
Design and analysis of practical reactors utilizing solid feedstocks rely on reaction rate parameters that are typically generated in lab-scale reactors. Evaluation of the reaction rate information often relies on assumptions of uniform temperature, velocity, and species distributions in the reactor, in lieu of detailed measurements that provide local information. This assumption might be a source of substantial error, since reactor designs can impose significant inhomogeneities, leading to data misinterpretation. Spatially resolved reactor simulations help understand the key processes within the reactor and support the identification of severe variations of temperature, velocity, and species distributions. In this work, Sandia's pressurized entrained flow reactor is modeled to identify inhomogeneities in the reaction zone. Tracer particles are tracked through the reactor to estimate the residence times and burnout ratio of introduced coal char particles in gasifying environments. The results reveal a complex mixing environment for the cool gas and particles entering the reactor along the centerline and the main high-speed hot gas reactor flow. Furthermore, the computational fluid dynamics (CFD) results show that flow asymmetries are introduced through the use of a horizontal gas pre-heating section that connects to the vertical reactor tube. Computed particle temperatures and residence times in the reactor differ substantially from the idealized plug flow conditions typically evoked in interpreting experimental measurements. Furthermore, experimental measurements and CFD analysis of heat flow through porous refractory insulation suggest that for the investigated conditions (1350 °C, <20 atm), the thermal conductivity of the insulation does not increase substantially with increasing pressure.
Knowledge of soot particle sizes is important for understanding soot formation and heat transfer in combustion environments. Soot primary particle sizes can be estimated by measuring the decay of time-resolved laser-induced incandescence (TiRe-LII) signals. Existing methods for making planar TiRe-LII measurements require either multiple cameras or time-gate sweeping with multiple laser pulses, making these techniques difficult to apply in turbulent or unsteady combustion environments. Here, we report a technique for planar soot particle sizing using a single high-sensitivity, ultra-high-speed 10 MHz camera with a 50 ns gate and no intensifier. With this method, we demonstrate measurements of background flame luminosity, prompt LII, and TiRe-LII decay signals for particle sizing in a single laser shot. The particle sizing technique is first validated in a laminar non-premixed ethylene flame. Then, the method is applied to measurements in a turbulent ethylene jet flame.
The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 104 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal char produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. The results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.