Publications

Results 26–32 of 32
Skip to search filters

Wind Turbine Wakes

Kelley, Christopher L.; Maniaci, David C.; Resor, Brian R.

The total energy produced by a wind farm depends on the complex interaction of many wind turbines operating in proximity with the turbulent atmosphere. Sometimes, the unsteady forces associated with wind negatively influence power production, causing damage and increasing the cost of producing energy associated with wind power. Wakes and the motion of air generated by rotating blades need to be better understood. Predicting wakes and other wind forces could lead to more effective wind turbine designs and farm layouts, thereby reducing the cost of energy, allowing the United States to increase the installed capacity of wind energy. The Wind Energy Technologies Department at Sandia has collaborated with the University of Minnesota to simulate the interaction of multiple wind turbines. By combining the validated, large-eddy simulation code with Sandia’s HPC capability, this consortium has improved its ability to predict unsteady forces and the electrical power generated by an array of wind turbines. The array of wind turbines simulated were specifically those at the Sandia Scaled Wind Farm Testbed (SWiFT) site which aided the design of new wind turbine blades being manufactured as part of the National Rotor Testbed project with the Department of Energy.

More Details

Assessment of Scaled Rotors for Wind Tunnel Experiments

Maniaci, David C.; Kelley, Christopher L.; Chiu, Phillip C.

Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor, the G1, designed and built by researchers at the Technical University of München.

More Details

Dynamic wake meandering model comparison with varying fidelity models for wind turbine wake prediction

Annual Forum Proceedings - AHS International

Ennis, Brandon L.; Kelley, Christopher L.; Maniaci, David C.

The dynamic wake meandering model (DWM) is a common wake model used for fast prediction of wind farm power and loads. This model is compared to higher fidelity vortex method (VM) and actuator line large eddy simulation (AL-LES) model results. By looking independently at the steady wake deficit model of DWM, and performing a more rigorous comparison than averaged result comparisons alone can produce, the models and their physical processes can be compared. The DWM and VM results of wake deficit agree best in the mid-wake region due to the consistent recovery prior to wake breakdown predicted in the VM results. DWM and AL-LES results agree best in the far-wake due to the low recovery of the laminar flow field AL-LES simulation. The physical process of wake recovery in the DWM model differed from the higher fidelity models and resulted solely from wake expansion downstream, with no momentum recovery up to 10 diameters. Sensitivity to DWM model input boundary conditions and their effects are shown, with greatest sensitivity to the rotor loading and to the turbulence model.

More Details
Results 26–32 of 32
Results 26–32 of 32