Publications

Results 26–50 of 71
Skip to search filters

Demonstration of a silicon photonic transceiver for polarization-based discrete variable quantum key distribution

Optics InfoBase Conference Papers

Cai, Hong; Long, Christopher M.; DeRose, Christopher T.; Boynton, Nicholas; Urayama, Junji U.; Pomerene, Andrew P.; Starbuck, Andrew L.; Trotter, Douglas C.; Davids, Paul D.; Lentine, Anthony L.

We demonstrate a silicon photonic transceiver circuit to implement polarization encoding/decoding for DV-QKD. The circuit is capable of encoding BB84 states with >30 dB PER and decoding with >20 dB ER.

More Details

Ultrahigh extinction on-chip amplitude modulators with broadband operation

Optics InfoBase Conference Papers

Liu, Sheng L.; Cai, Hong; DeRose, Christopher T.; Davids, Paul D.; Pomerene, Andrew P.; Starbuck, Andrew L.; Trotter, Douglas C.; Urayama, Junji U.; Camacho, Ryan C.; Lentine, Anthony L.

We experimentally demonstrate amplitude modulators (AMs) with >65 dB extinction across over a 160 nm spectral range. The output optical phase response is also characterized when the amplitude is modulated.

More Details

Radio frequency silicon photonics at Sandia National Laboratories

2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference, AVFOP 2016

DeRose, Christopher T.; Gehl, M.; Long, C.; Boynton, N.; Martinez, N.; Pomerene, A.; Starbuck, A.; Dallo, C.; Hood, D.; Trotter, E.D.; Davids, P.; Lentine, A.

Sandia National Laboratories has developed a toolkit of RF photonic devices. These devices have been used in the development of multielement RF photonic circuits and in support of MPW runs. In this talk I will discuss Sandia's silicon photonic process and RF photonic device performance.

More Details

Compact silicon photonic resonance-sssisted variable optical attenuator

Optics Express

Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Trotter, Douglas C.; Pomerene, Andrew P.; Mookherjea, Shayan

A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

More Details

Challenges for optical interconnect for beyond Moore's law computing

2016 IEEE International Conference on Rebooting Computing, ICRC 2016 - Conference Proceedings

Lentine, Anthony L.; DeRose, Christopher T.

We describe the challenge of implementing optical interconnect for beyond Moore's electronic devices. In particular, we developed a simple link model and calculated the optical communications energy for logic voltages down to 10 mV. The results of this link model show a limit to the minimum communications energy that depends on the achievable extinction ratio of the devices. This work gives some insight into the tact that should be taken for improved optical devices to have an impact in future computing systems using ultra-low voltage transistor devices.

More Details

Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect

Optics Express

Wang, Xiaoxi; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Trotter, Douglas C.; Pomerene, Andrew P.; Mookherjea, Shayan

Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

More Details

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Optics Express

Martinez, Nicolas J.D.; DeRose, Christopher T.; Brock, Reinhard W.; Starbuck, Andrew L.; Pomerene, Andrew P.; Lentine, Anthony L.; Trotter, Douglas C.; Davids, Paul D.

We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

More Details

An adiabatic/diabatic polarization beam splitter

5th IEEE Photonics Society Optical Interconnects Conference, OI 2016

Cai, Hong; Boynton, Nicholas; Lentine, Anthony L.; Pomerene, Andrew P.; Trotter, Douglas C.; Starbuck, Andrew L.; Davids, Paul D.; DeRose, Christopher T.

We demonstrate an on-chip polarization beam splitter (PBS), which is adiabatic for the transverse magnetic mode, and diabatic for the transverse electric mode. The PBS has a simple structure that is tolerant to manufacturing variations and exhibits high polarization extinction ratios over a wide bandwidth.

More Details

Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics

Scientific Reports

Weigel, Peter O.; Savanier, Marc; DeRose, Christopher T.; Pomerene, Andrew P.; Starbuck, Andrew L.; Lentine, Anthony L.; Stenger, Vincent; Mookherjea, Shayan

We demonstrate a photonic waveguide technology based on a two-material core, in which light is controllably and repeatedly transferred back and forth between sub-micron thickness crystalline layers of Si and LN bonded to one another, where the former is patterned and the latter is not. In this way, the foundry-based wafer-scale fabrication technology for silicon photonics can be leveraged to form lithium-niobate based integrated optical devices. Using two different guided modes and an adiabatic mode transition between them, we demonstrate a set of building blocks such as waveguides, bends, and couplers which can be used to route light underneath an unpatterned slab of LN, as well as outside the LN-bonded region, thus enabling complex and compact lightwave circuits in LN alongside Si photonics with fabrication ease and low cost.

More Details

Challenges in the implementation of dense wavelength division multiplexed (DWDM) optical interconnects using resonant silicon photonics

Proceedings of SPIE - The International Society for Optical Engineering

Lentine, Anthony L.; DeRose, Christopher T.

Small silicon photonics micro-resonator modulators and filters hold the promise for multi-terabit per-second interconnects at energy consumptions well below 1 pJ/bit. To date, no products exist and little known commercial development is occurring using this technology. Why? In this talk, we review the many challenges that remain to be overcome in bringing this technology from the research labs to the field where they can overcome important commercial, industrial, and national security limitations of existing photonic technologies.

More Details

Racetrack resonator as a loss measurement platform for photonic components

Optics Express

Jones, Adam J.; DeRose, Christopher T.; Lentine, Anthony L.; Starbuck, Andrew L.; Pomerene, Andrew P.; Norwood, Robert A.

This work represents the first complete analysis of the use of a racetrack resonator to measure the insertion loss of efficient, compact photonic components. Beginning with an in-depth analysis of potential error sources and a discussion of the calibration procedure, the technique is used to estimate the insertion loss of waveguide width tapers of varying geometry with a resulting 95% confidence interval of 0.007 dB. The work concludes with a performance comparison of the analyzed tapers with results presented for four taper profiles and three taper lengths.

More Details

Precision Laser Annealing of Focal Plane Arrays

Bender, Daniel A.; DeRose, Christopher T.; Starbuck, Andrew L.; Verley, Jason V.; Jenkins, Mark W.

We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

More Details

Silicon photonics platform for national security applications

IEEE Aerospace Conference Proceedings

Lentine, Anthony L.; DeRose, Christopher T.; Davids, Paul D.; Martinez, Nicolas J.D.; Zortman, William A.; Cox, Jonathan A.; Jones, Adam; Trotter, Douglas C.; Pomerene, Andrew P.; Starbuck, Andrew L.; Savignon, Daniel J.; Bauer, Todd B.; Wiwi, Michael W.; Chu, Patrick B.

We review Sandia's silicon photonics platform for national security applications. Silicon photonics offers the potential for extensive size, weight, power, and cost (SWaP-c) reductions compared to existing III-V or purely electronics circuits. Unlike most silicon photonics foundries in the US and internationally, our silicon photonics is manufactured in a trusted environment at our Microsystems and Engineering Sciences Application (MESA) facility. The Sandia fabrication facility is certified as a trusted foundry and can therefore produce devices and circuits intended for military applications. We will describe a variety of silicon photonics devices and subsystems, including both monolithic and heterogeneous integration of silicon photonics with electronics, that can enable future complex functionality in aerospace systems, principally focusing on communications technology in optical interconnects and optical networking.

More Details

Efficient coefficient extraction from doublet resonances in microphotonic resonator transmission functions

CLEO: Science and Innovations, CLEO-SI 2015

Jones, Adam J.; Lentine, Anthony L.; DeRose, Christopher T.; Starbuck, Andrew L.; Pomerene, Andrew P.; Norwood, Robert A.

We develop a computationally efficient and robust algorithm to automatically extract the coefficients of doublet resonances and apply this technique to 418 resonances in ring resonator transmission data with a mean RMS deviation of 7.28 × 10-4. © OSA 2015.

More Details
Results 26–50 of 71
Results 26–50 of 71