Advanced Power Sources R&D
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of the Electrochemical Society.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Electrochemical Society
An electrochemical probe station (EPS) for automated electrochemical testing of electronic-grade thin films is presented. Similar in design to a scanning droplet cell, this modular system features a flexible probe tip capable of contacting both metallic and oxide surfaces. Using the highly sensitive Pt-H 2SO 4 system, it is demonstrated that the EPS obtains results equivalent to those of a traditional electrochemical cell. Further, electrical testing of thin film PbZr 0.52Ti 0.48O 3 shows that this system may be used to ascertain fundamental electrical properties of dielectric films. © 2012 The Electrochemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Advanced Materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.
5th IMAPS/ACerS International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies 2009, CICMT 2009
Recent advances in nanoparticle inks have enabled inkjet printing of metal traces and interconnects with very low (100-200°C) process temperatures. This has enabled integration of printable electronics such as antennas and radio frequency identification (RFID) tags with polyimide, teflon, PCBs, and other low temperature substrates. We discuss here printing of nanoparticle inks for three dimensional interconnects, and the apparent mechanism of nanoparticle ink conductivity development at these low process temperatures.
Abstract not provided.
We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp transfer method, and then cured fully to make the valve seats. DC actuation in air of these valves yielded operational voltages as low as 15V, by using a supporting structure above the valve seat that allowed sufficient restoring forces to be applied while not enhancing actuation forces to raise the valve actuation potential. Both actuate to open and actuate to close valves have been demonstrated, and integrated into a microfluidic platform, and demonstrated fluidic control using electrostatic valves.
Abstract not provided.
Abstract not provided.