Publications

Results 176–200 of 202
Skip to search filters

Thermonuclear and beam fusion in deuterium Z-pinch implosions : theory and modeling

Deeney, Christopher D.; Ruiz, Carlos L.; Coverdale, Christine A.

The conclusions of this report are: (1) 1D and 2D RMHD simulations indicate feasibility of producing high thermonuclear neutron yields in deuterium and DT gas-puff Z-pinches -- (a) Z 1.7 x 10{sup 13} DD neutrons at 70 kV, 13 MA (Z1384); (b) (3 to 6) x 10{sup 14} at 90 kV, 17 MA (Z1422); (c) Predicted for ZR 2 x 10{sup 15} DD and 6 x 10{sup 16} DT neutrons; (2) Theory and modeling issues -- collisionless ions, nonthermal ions; (3) Experimental data on the origin of the neutrons not yet conclusive, need more shots; and (4) Applications -- (a) Fusion 2.5 and 14 MeV neutron source; (b) Pulsed subcritical neutron source with uranium blanket for {approx}10x neutron and {approx}1000x energy multiplication (Smirnov, Feoktistov and Klimov); and (c) Fusion-assisted keV x-ray plasma radiation source.

More Details

Spectroscopic modeling and comparison of radiation from X-pinches and wire arrays produced on the 1 MA pulsed power generator at UNR

Coverdale, Christine A.; Jones, Brent M.; Deeney, Christopher D.

X-ray spectra and images from Al (with 5% of Mg and some with 5% of NaF dopants) and Cu (pure and with 4% of Ni) wire arrays and X-pinches were accumulated in experiments on the 1 MA pulsed power generator at UNR. In particular, axially and radially resolved K-shell X-ray spectra of Al, Mg, and Na and L-shell X-ray spectra of Cu and Ni were recorded by a KAP crystal (in a spectral region from 6 to 15 Aring) through different slits from 50 mum to 3 mm. In addition, spatially integrated harder X-ray spectra were monitored by a LiF crystal. Non-LTE kinetic models of Al, Mg, and Na, and of Cu and Ni provided spatially resolved electron temperatures and densities for experiments with Al and Cu loads, respectively. Advantages of using alloys and dopants with small concentrations for spectroscopic plasma diagnostics will be presented. Dependence of the plasma's spatial structures, temperatures, and densities from wire material and load configurations, sizes, and masses will be discussed .

More Details

Axial and temporal gradients in Mo wire array Z pinches

Proposed for publication in Physics of Plasma.

Coverdale, Christine A.; Deeney, Christopher D.

Three nested molybdenum wire arrays with initial outer diameters of 45, 50, and 55 mm were imploded by the - 20 MA, 90 ns rise-time current pulse of Sandia's Z accelerator. The implosions generated Mo plasmas with {approx} 10% of the array's initial mass reaching Ne-like and nearby ionization stages. These ions emitted 2-4 keV L-shell x rays with radiative powers approaching 10 TW. Mo L-shell spectra with axial and temporal resolution were captured and have been analyzed using a collisional-radiative model. The measured spectra indicate significant axial variation in the electron density, which increases from a few times 10{sup 20} cm{sup -3} at the cathode up to - 3 x 10{sup 21} cm{sup -3} near the middle of the 20 mm plasma column (8 mm from the anode). Time-resolved spectra indicate that the peak electron density is reached before the peak of the L-shell emission and decreases with time, while the electron temperature remains within 10% of 1.7 keV over the 20-30 ns L-shell radiation pulse. Finally, while the total yield, peak total power, and peak L-shell power all tended to decrease with increasing initial wire array diameters, the L-shell yield and the average plasma conditions varied little with the initial wire array diameter.

More Details

Hybrid simulation of the Z-pinch instabilities for profiles generated in the process of wire array implosion in the Saturn pulsed power generator

Proposed for publication in Physics of Plasma.

Deeney, Christopher D.; Coverdale, Christine A.

Experimental evidence suggests that the energy balance between processes in play during wire array implosions is not well understood. In fact the radiative yields can exceed by several times the implosion kinetic energy. A possible explanation is that the coupling from magnetic energy to kinetic energy as magnetohydrodynamic plasma instabilities develop provides additional energy. It is thus important to model the instabilities produced in the after implosion stage of the wire array in order to determine how the stored magnetic energy can be connected with the radiative yields. To this aim three-dimensional hybrid simulations have been performed. They are initialized with plasma radial density profiles, deduced in recent experiments [C. Deeney et al., Phys. Plasmas 6, 3576 (1999)] that exhibited large x-ray yields, together with the corresponding magnetic field profiles. Unlike previous work, these profiles do not satisfy pressure balance and differ substantially from those of a Bennett equilibrium. They result in faster growth with an associated transfer of magnetic energy to plasma motion and hence kinetic energy.

More Details

Ion viscous heating in a magnetohydrodynamically unstable Z-pinch at over two billion Kelvin

Proposed for publication in Nature.

Jones, Brent M.; Coverdale, Christine A.; Deeney, Christopher D.

Pulsed power driven metallic wire-array Z pinches are the most powerful and efficient laboratory x-ray sources. Furthermore, under certain conditions the soft x-ray energy radiated in a 5 ns pulse at stagnation can exceed the estimated kinetic energy of the radial implosion phase by a factor of 3 to 4. A theoretical model is developed here to explain this, allowing the rapid conversion of magnetic energy to a very high ion temperature plasma through the generation of fine scale, fast-growing m=0 interchange MHD instabilities at stagnation. These saturate nonlinearly and provide associated ion viscous heating. Next the ion energy is transferred by equipartition to the electrons and thus to soft x-ray radiation. Recent time-resolved iron spectra at Sandia confirm an ion temperature T{sub i} of over 200 keV (2 x 10{sup 9} degrees), as predicted by theory. These are believed to be record temperatures for a magnetically confined plasma.

More Details

Ideal and non-ideal MHD regimes of wire array implosion obtained in 3D hybrid simulations and observed during experiments at NTF

Mehlhorn, Thomas A.; Coverdale, Christine A.; Jones, Brent M.; Deeney, Christopher D.

Recent 3D hybrid simulation of a plasma current-carrying column revealed two regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to appearance of large-scale axial perturbations and eventually to the bending of the plasma column. In the second regime, with five times larger Hall parameter, small-scale perturbations dominated and no bending of the plasma column was observed. Simulation results are compared to recent experimental data, including laser probing, x-ray spectroscopy and time-gated x-ray imaging during wire array implosions at NTF.

More Details

Spectroscopic diagnosis of nested-wire-array dynamics and interpenetration at 7 MA

Physical Review Letters

Deeney, C.; Apruzese, J.P.; Coverdale, Christine A.; Whitney, K.G.; Thornhill, J.W.; Davis, J.

Nested-wire array experiments were performed at the 7 MA level with 150 ns implosion times from an outer diameter of 40 mm. Analysis of spectral data indicates that material from the outer array preferentially occupies the high temperature core of the stagnated pinch independent of the interwire gap in the range of 1.1 to 4.5 mm. Detailed spectral analyses indicate that the outer array in both high or low-wire number cases in the source of the material that is heated to the highest temperatures. The results indicate that for the first time the outer array material becomes the highest temperature plasma during the implosion of the nested array.

More Details
Results 176–200 of 202
Results 176–200 of 202