Publications

Results 76–100 of 202
Skip to search filters

2D rad-MHD model assessment of designs for multiple-shell gas nozzles for Z

Jones, Brent M.; Coverdale, Christine A.; Ampleford, David A.; Jennings, Christopher A.; Cuneo, M.E.

AASC is designing multiple-shell gas puff loads for Z. Here we assess the influence of the loads initial gas distribution on its K-shell yield performance. Emphasis is placed on designing an optimal central jet initial gas distribution, since it is believed to have a controlling effect on pinch stability, pinch conditions, and radiation physics. We are looking at distributions that optimize total Ar K-shell emission and high energy (>10 KeV) continuum radiation. This investigation is performed with the Mach2 MHD code with non-LTE kinetics and ray trace based radiation transport.

More Details

Spectroscopic study of z-pinch stagnation on Z

Rochau, G.A.; Bailey, James E.; Coverdale, Christine A.; Ampleford, David A.; Cuneo, M.E.; Jones, Brent M.; Jennings, Christopher A.; Yu, Edmund Y.; Hansen, Stephanie B.

Fast z-pinches provide intense 1-10 keV photon energy radiation sources. Here, we analyze time-, space-, and spectrally-resolved {approx}2 keV K-shell emissions from Al (5% Mg) wire array implosions on Sandia's Z machine pulsed power driver. The stagnating plasma is modeled as three separate radial zones, and collisional-radiative modeling with radiation transport calculations are used to constrain the temperatures and densities in these regions, accounting for K-shell line opacity and Doppler effects. We discuss plasma conditions and dynamics at the onset of stagnation, and compare inferences from the atomic modeling to three-dimensional magneto-hydrodynamic simulations.

More Details

Diagnosing plasma conditions in a copper wire array shot on Z : spatially-averaged analysis compared to inferred properties of individual bright spots

Jones, Brent M.; Ampleford, David A.; Coverdale, Christine A.

Recent copper wire array shots on Z, when spectroscopically analyzed on a spatially-averaged basis, appear to have achieved ion densities near 10{sup 21} cm{sup -3}, electron temperatures of 1.25 keV, and K-shell radiating participation of 70-85% of the load mass. However, pinhole images of the shots reveal considerable structure, including several well-defined intensely radiating 'bright spots', which may be due to enhanced density, temperature, or some combination of the two. We have analyzed these individual spots on selected shots, using line-outs of their spectrum and inferred powers based on their images. We compare the properties of these spots (are they dense, hot, or both?), and examine their effect on inferring the radiating mass.

More Details

ALEGRA modeling of gas puff Z-pinch experiments at the ZR facility

Coverdale, Christine A.; Flicker, Dawn G.

Gas puff z-pinch experiments have been proposed for the refurbished Z (ZR) facility for CY2011. Previous gas puff experiments [Coverdale et. al., Phys. Plasmas 14, 056309, 2007] on pre-refurbishment Z established a world record for laboratory fusion neutron yield. New experiments would establish ZR gas puff capability for x-ray and neutron production and could surpass previous yields. We present validation of ALEGRA simulations against previous Z experiments including X-ray and neutron yield, modeling of gas puff implosion dynamics for new gas puff nozzle designs, and predictions of X-ray and neutron yields for the proposed gas puff experiments.

More Details

Comprehensive analysis of radiative properties of brass and Al arranged in nested cylindrical wire arrays

Coverdale, Christine A.

Experimental results of nested cylindrical wire arrays (NCWA) consisting of brass (70% Cu and 30% Zn) wires on one array and Al (5056, 5% Mg) wires on the other array performed on the UNR Zebra generator at 1.0 MA current are compared and analyzed. Specifically, radiative properties of K-shell Al and Mg ions and L-shell Cu and Zn ions are compared as functions of the placements of the brass and Al wires on the inner and outer arrays. A full diagnostic set which included more than ten different beam-lines was implemented. Identical loads were fielded to allow the timing of time-gated pinhole and x-ray spectrometers to be shifted to get a more complete understanding of the evolution of plasma parameters over the x-ray pulse. The importance of the study of NCWAs with different wire materials is discussed.

More Details

First analysis of radiative properties of moderate-atomic-number planar wire arrays on Zebra at UNR at higher current of 1.7 MA

Coverdale, Christine A.

The analysis of implosions of Cu and Ag planar wire array (PWA) loads recently performed at the enhanced 1.7 MA Zebra generator at UNR is presented. Experiments were performed with a Load Current Multiplier with a 1cm anode-cathode gap (twice shorter than in a standard 1 MA mode). A full diagnostic set included more than ten different beam-lines with the major focus on time-gated and time-integrated x-ray imaging and spectra, total radiation yields, and fast, filtered x-ray detector data. In particular, the experimental results for a double PWA load consisting of twelve 10 {micro}m Cu wires in each row (total mass M {approx} 175 {micro}g) and a much heavier single PWA load consisting of ten 30 {micro}m Ag wires (M {approx} 750 {micro}g) were analyzed using a set of theoretical codes. The effects of both a decreased a-c gap and an increased current on radiative properties of these loads are discussed.

More Details

Evaluation of nested wire array dynamics with mixed wire array Z pinches

Coverdale, Christine A.; Jones, Brent M.; Jennings, Christopher A.; Cuneo, M.E.

A series of experiments at the Z Accelerator was performed with 40mm and 50mm diameter nested wire arrays to investigate the interaction of the arrays and assess radiative characteristics. These arrays were fielded with one array as Al:Mg (either the inner or the outer array) and the other array as Ni-clad Ti (the outer or inner array, with respect to location of the Al:Mg). In all the arrays, the mass and radius ratio of the outer:inner was 2:1. The wire number ratio was also 2:1 in some cases, but the Al:Mg wire number was increased in some loads. This presentation will focus on analysis of the emitted radiation (in multiple photon energy bins) and measured plasma conditions (as inferred from x-ray spectra). A discussion on what these results indicate about nested array dynamics will also be presented.

More Details

Doppler effects on 3-D non-LTE radiation transport and emission spectra

Hansen, Stephanie B.; Jones, Brent M.; Ampleford, David A.; Bailey, James E.; Rochau, G.A.; Coverdale, Christine A.; Jennings, Christopher A.; Cuneo, M.E.

Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission and absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.

More Details

Mass accretion and nested array dynamics from Ni-Clad Ti-Al wire array Z pinches

Coverdale, Christine A.; Jones, Brent M.; Cuneo, M.E.; Jennings, Christopher A.

Analysis of 50 mm diameter wire arrays at the Z Accelerator has shown experimentally the accretion of mass in a stagnating z pinch and provided insight into details of the radiating plasma species and plasma conditions. This analysis focused on nested wire arrays with a 2:1 (outeninner) mass, radius, and wire number ratio where Al wires were fielded on the outer array and Ni-clad Ti wires were fielded on the inner array.In this presentation, we will present analysis of data from other mixed Al/Ni-clad Ti configurations to further evaluate nested wire array dynamics and mass accretion. These additional configurations include the opposite configuration to that described above (Ni-clad Ti wires on the outer array, with Al wires on the inner array) as well as higher wire number Al configurations fielded to vary the interaction of the two arrays. These same variations were also assessed for a smaller diameter nested array configuration (40 mm). Variations in the emitted radiation and plasma conditions will be presented, along with a discussion of what the results indicate about the nested array dynamics. Additional evidence for mass accretion will also be presented.

More Details

What can spectroscopy and imaging of multi-planar wire arrays reveal about Z-pinch radiation physics?

Coverdale, Christine A.

The planar wire array research on Zebra at UNR that started in 2005 continues experiments with new types of planar loads with results for consideration and comprehensive analysis [see, for example, Kantsyrev et al, HEDP 5, 115 (2009)]. The detailed studies of radiative properties of such loads are important and spectroscopy and imaging constitute a very valuable and informative diagnostic tool. The set of theoretical codes is implemented which provides non-LTE kinetics, wire ablation dynamic, and MHD modeling. This talk is based on the results of new recent experiments with planar wire arrays on Zebra at UNR. We start with results on radiative properties of a uniform single planar wire array (SPWA) from alloyed Al wires and move to combined triple planar wire arrays (TPWA) made from two materials, Cu and Al. Such combined TPWA includes three planar wire rows that are parallel to each other and made of either Cu or Al alloyed wires. Three different configurations (Al/Cu/Al, Cu/Al/Cu, and Cu/Cu/Al) are considered and compared with each other, and with the results from SPWA of the same materials. X-ray time-gated and time integrated pinhole images and spectra are analyzed together with bolometer, PCD, and XRD measurements, and optical images. Emphasis is made on the radiative properties and temporal and spatial evolution of plasma parameters of such two-component plasmas. The opacity effects are considered and the important question of what causes K-shell Al lines to be optically thin in combined TPWAs is addressed. In conclusion, the new findings from studying multi-planar wire array implosions are summarized and their input to Z-pinch radiation physics is discussed.

More Details

Neutron production in deuterium gas-puff implosions on the refurbished Z accelerator

Coverdale, Christine A.; Flicker, Dawn G.

It has been experimentally demonstrated that deuterium gas-puff implosions at >15 MA are powerful sources of fusion neutrons. Analysis of these experiments indicates that a substantial fraction of the obtained DD fusion neutron yields {approx} 3 x 10{sup 13}, about 50%, might have been of thermonuclear origin. The goal of our study is to estimate the scaling of the thermonuclear neutron yield from deuterium gas-puff implosions with higher load currents available after the refurbishment of Z, both in the short-pulse ({approx}100 ns) and in the long-pulse ({approx}300 ns) implosion regimes. We report extensive ID and 2D radiation-hydrodynamic simulations of such implosions. The mechanisms of ion heating to the fusion temperatures of 7-10 keV are essentially the same as used in structured gas-puff loads to generate high Ar K-shell yields: shock thermalization of the implosion kinetic energy and subsequent adiabatic heating of the on-axis plasma. We investigate the role of high-atomic-number gas that can be added to the outer shell to improve both energy coupling of the imploded mass to the generator and energy transfer to the inner part of the load, due to radiative losses that make the outer shell thin. We analyze the effect of imposed axial magnetic field {approx}30-100 kG, which can contribute both to stabilization of the implosion and to Joule heating of the imploded plasma. Our estimates indicate that thermonuclear DD neutron yields approaching 10 are within the reach on refurbished Z.

More Details

3-Dimensional modeling of large diameter wire array high intensity K-shell radiation sources

Jennings, Christopher A.; Ampleford, David A.; Hansen, Stephanie B.; Cuneo, M.E.; Coverdale, Christine A.; Jones, Brent M.

Large diameter nested wire array z-pinches imploded on the Z-generator at Sandia National Laboratories have been used extensively to generate high intensity K-shell radiation. Large initial radii are required to obtain the high implosion velocities needed to efficiently radiate in the K-shell. This necessitates low wire numbers and large inter-wire gaps which introduce large azimuthal non-uniformities. Furthermore, the development of magneto-Rayleigh-Taylor instabilities during the implosion are known to generate large axial non-uniformity These effects motivate the complete, full circumference 3-dimensional modeling of these systems. Such high velocity implosions also generate large voltages, which increase current losses in the power feed and limit the current delivery to these loads. Accurate representation of the generator coupling is therefore required to reliably represent the energy delivered to, and the power radiated from these sources. We present 3D-resistive MHD calculations of the implosion and stagnation of a variety of large diameter stainless steel wire arrays (hv {approx} 6.7 keV), imploded on the Z-generator both before and after its refurbishment. Use of a tabulated K-shell emission model allows us to compare total and K-shell radiated powers to available experimental measurements. Further comparison to electrical voltage and current measurements allows us to accurately assess the power delivered to these loads. These data allow us to begin to constrain and validate our 3D MHD calculations, providing insight into ways in which these sources may be further optimized.

More Details

Design of multiple-shell gas nozzles for refurbished Z

Ampleford, David A.; Cuneo, M.E.; Coverdale, Christine A.; Jones, Brent M.

This paper presents initial designs of multiple-shell gas puff imploding loads for the refurbished Z generator. The nozzle has three independent drivers for three independent plena. The outer and middle plena may be charged to 250psia whilst the central jet can be charged to 1000psia. 8-cm and 12-cm outer diameter nozzles have been built and tested on the bench. The unique valve design provides a very fast opening, hence the amount of stray gas outside the core nozzle flow is minimized. A similar 8-cm nozzle was characterized earlier using a fiber optic interferometer, but at lower pressures and without the central jet. Those data have been scaled to the higher pressures required for refurbished Z and used to estimate performance. The use of three independent plena allows variation of the pressure (hence mass distribution) in the nozzle flow, allowing optimization of implosion stability and the on-axis mass that most contributes to K-shell emission. Varying the outer/middle mass ratios influences the implosion time and should affect the details of the assembly on axis as well as the radiation physics. Varying the central jet pressure will have a minor effect on implosion dynamics, but a strong effect on pinch conditions and radiation physics. Optimum mass distributions for planned initial Ar shots on refurbished Z are described. Additional interferometer data including the central jet and at higher pressures will also be presented.

More Details

Wire array Z-pinch length variations for K-shell x-ray generation on Z

Jones, Brent M.; Hansen, Stephanie B.; Coverdale, Christine A.; Cuneo, M.E.; Ampleford, David A.; Jennings, Christopher A.

Large diameter (50-70 mm) wire array z pinches are fielded on the refurbished Z machine to generate 1-10 keV K-shell x-ray radiation. Imploding with velocities approaching 100 cm/{micro}s, these loads create large dL/dt which generates a high voltage, stresses the convolute, and leads to current loss. High velocities are required to reach the few-keV electron temperatures required to strip moderate-atomic-number plasmas to the K shell, thus there is an inherent trade-off between achieving high velocity and stressing the pulsed power driver via the large dL/dt.Here, we present experiments in which the length of stagnated Cu and stainless steel z pinches was varied from 12-24 mm. The motivation in reducing the pinch height is to lower the final inductance and improve coupling to the generator. Shortening a Cu pinch from 20 to 12 mm by angling the anode glide plane reduced the final L and dL/dt, enhancing the feed current by 1.4 MA, nearly doubling the K-shell power per unit length, and increasing the net K-shell yield by 20%. X-ray spectroscopy is employed to assess differences in plasma conditions between the loads. Lengthening the pinch could lead to yield enhancements by increasing the mass participating in the implosion, provided the increased inductance is not overly detrimental to the current coupling. In addition to the experimental results, these scenarios are studied via thin-shell 0D and also magneto-hydrodynamic modeling with a coupled driver circuit model.

More Details

Two-dimensional radiation MHD K-shell modeling of stainless-steel double-wire-array experiments on the refurbished Z machine

IEEE Transactions on Plasma Science

Thornhill, J.W.; Giuliani, John L.; Dasgupta, Arati; Apruzese, John P.; Davis, Jack; Chong, Young K.; Jennings, Christopher A.; Ampleford, David A.; Jones, Brent M.; Coverdale, Christine A.; Jones, Brent M.; Cuneo, Michael E.; Stygar, W.A.

Two-dimensional (r, z) magnetohydrodynamic simulations with nonlocal thermodynamic equilibrium ionization and radiation transport are used to investigate the K-shell radiation output from doubly nested large-diameter (> 60 mm) stainlesssteel arrays fielded on the refurbished Z pulsed-power generator. The effects of the initial density perturbations, wire ablation rate, and current loss near the load on the total power, K-shell power, and K-shell yield are examined. The broad mass distribution produced by wire ablation largely overcomes the deleterious impact on the K-shell power and yield of 2-D instability growth. On the other hand, the possible current losses in the final feed section lead to substantial reductions in K-shell yield. Following a survey of runs, the parameters for the perturbation level, ablation rate, and current loss are chosen to benchmark the simulations against existing 65-mm-diameter radiation data. Themodel is then used to predict the K-shell properties of larger diameter (70 mm) arrays to be imploded on the Z generator. © 2010 IEEE.

More Details

Investigation of radial wire arrays for inertial confinement fusion and radiation effects science

Ampleford, David A.; Jennings, Christopher A.; Cuneo, M.E.; McBride, Ryan D.; Sinars, Daniel S.; Jones, Brent M.; Coverdale, Christine A.; Jones, Michael J.

Radial wire arrays provide an alternative x-ray source for Z-pinch driven Inertial Confinement Fusion. These arrays, where wires are positioned radially outwards from a central cathode to a concentric anode, have the potential to drive a more compact ICF hohlraum. A number of experiments were performed on the 7MA Saturn Generator. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1MA level, where they have been shown to provide similar x-ray outputs to larger diameter cylindrical arrays, to the higher current levels required for ICF. Data indicates that at 7MA radial arrays can obtain higher power densities than cylindrical wire arrays, so may be of use for x-ray driven ICF on future facilities. Even at the 7MA level, data using Saturn's short pulse mode indicates that a radial array should be able to drive a compact hohlraum to temperatures {approx}92eV, which may be of interest for opacity experiments. These arrays are also shown to have applications to jet production for laboratory astrophysics. MHD simulations require additional physics to match the observed behavior.

More Details
Results 76–100 of 202
Results 76–100 of 202