Using seismic spatial gradients in a neural network to discriminate between earthquakes and explosions
Abstract not provided.
Abstract not provided.
Abstract not provided.
Bulletin of the Seismological Society of America
We document azimuthally dependent seismic scattering at the Source Physics Experiment (SPE) using the large-N array. The large-N array recorded the seismic wavefield produced by the SPE-5 buried chemical explosion, which occurred in April 2016 at the Nevada National Security Site, U.S.A. By selecting a subset of vertical-component geophones from the large-N array, we formed 10 linear arrays, with different nominal source-receiver azimuths as well as six 2D arrays. For each linear array, we evaluate wavefield coherency as a function of frequency and interstation distance. For both the P arrival and post-P arrivals, the coherency is higher in the northeast propagation direction, which is consistent with the strike of the steeply dipping Boundary fault adjacent to the northwest side of the large-N array. Conventional array analysis using a suite of 2D arrays suggests that the presence of the fault may help explain the azimuthal dependence of the seismic-wave coherency for all wave types. This fault, which separates granite from alluvium, may be acting as a vertically oriented refractor and/or waveguide.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Bulletin of the Seismological Society of America
We invert far-field infrasound data for the equivalent seismoacoustic timedomain moment tensor to assess the effects of variable atmospheric models and source phenomena. The infrasound data were produced by a series of underground chemical explosions that were conducted during the Source Physics Experiment (SPE), which was originally designed to study seismoacoustic signal phenomena. The first goal of this work is to investigate the sensitivity of the inversion to the variability of the estimated atmospheric model. The second goal is to determine the relative contribution of two presumed source mechanisms to the observed infrasonic wavefield. Rather than using actual atmospheric observations to estimate the necessary atmospheric Green’s functions, we build a series of atmospheric models that rely on publicly available, regional-scale atmospheric observations. The atmospheric observations are summarized and interpolated onto a 3D grid to produce a model of sound speed at the time of the experiment. For each of four SPE acoustic datasets that we invert, we produced a suite of three atmospheric models for each chemical explosion event, based on 10 yrs of meteorological data: an average model, which averages the atmospheric conditions for 10 yrs prior to each SPE event, as well as two extrema models. To parameterize the inversion, we assume that the source of infrasonic energy results from the linear combination of explosion-induced surface spall and linear seismic-to-elastic mode conversion at the Earth’s free surface. We find that the inversion yields relatively repeatable results for the estimated spall source. Conversely, the estimated isotropic explosion source is highly variable. This suggests that 1) the majority of the observed acoustic energy is produced by the spall and/or 2) our modeling of the elastic energy, and the subsequent conversion to acoustic energy, is too simplistic.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document serves to guide a researcher through the process of running the Weather Research and Forecasting (WRF) model and incorporating observations into coarse resolution reanalysis products to model atmospheric conditions at high (50 m) resolution. This documentation is specific to WRF and the WRF Preprocessing System (WPS) version 3.8.1 and the Objective Analysis (OBSGRID) code released on April 8, 2016. Output from WRF serves as an input into the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS) which performs staggered-grid finite difference modeling of the acoustic velocity pressure system to produce Green's functions through these atmospheric models.
We invert far field infrasound data for the equivalent seismo-acoustic time domain moment tensor to assess the effects of variable atmospheric models as well as to quantify the relative contributions of two presumed source phenomena. The infrasound data was produced by a series of underground chemical explosions that were conducted during the Source Physics Experiment, (SPE) which was originally designed to study explosion-generated seismo-acoustic signal phenomena. The goal of the work presented herein is two-fold: the first goal is to investigate the sensitivity of the estimated time domain moment tensors to variability of the estimated atmospheric model. The second goal is to determine the relative contribution of two possible source mechanisms to the observed in- frasonic wave field. Rather than using actual atmospheric observations to estimate the necessary atmospheric Green's functions, we build a series of atmospheric models that rely on publicly avail- able, regional atmospheric observations and the assumption that the acoustic energy results from a linear combination of an underground isotropic explosion and surface spall. The atmospheric observations are summarized and interpolated onto a 3D grid to produce a model of sound speed at the time of the experiment. For each of four SPE acoustic datasets that we invert, we produced a suite of three atmospheric models, based on ten years of regional meteorological observations: an average model, which averages the atmospheric conditions for ten years prior to each SPE event, as well as two extrema models. We find that the inversion yields relatively repeatable results for the estimated spall source. Conversely, the estimated isotropic explosion source is highly variable. This suggests that the majority of the observed acoustic energy is produced by the spall source and/or our modeling of the elastic energy propagation, and it's subsequent conversion to acoustic energy via linear elastic-to-acoustic coupling at the free surface, is too simplistic.
Resolving the time dependent terms in the seismic moment tensor provides important informa- tion that can be used to interpret the source process of an explosion, including the separation of isotropic explosion terms from shear forces and potentially isolated force couples. In this report, we detail our method of inverting three component seismic data for the seismic moment tensor. We review possible seismic source models from the simplest isotropic explosion type source to those incorporating the six independent moment tensor terms. The inversion we describe is formulated in the frequency domain, and results in estimates of time dependent moment tensor components. The inversion relies on an accurate estimate of the Green's functions of the Earth. However, given the complexity of the Earth, we explore the effects of inaccuracies in the presumed Earth model used to estimate the Green's functions needed for the inversion. Specifically, we explore the effects of stochastic variations in the Earth models on the inversion results. These tests are syn- thetic throughout, and show that adding stochastic density/velocity heterogeneity in the presumed Earth model results in reduced amplitude seismic moment tensor estimates, as well as degrading the data misfit. We suggest two mitigation strategies. First, produce a suite of Green's functions using different realizations of the stochastic field within the Earth Model. Secondly, perform the in- version in the power spectral domain, eliminating all phase information. Finally, we analyze actual seismic data collected in winter 2017/2018. The seismic data was collected at in active geothermal well site outside of Winnimucca, NV, and was produced during well stimulation operations. In general, the inversion results were poor, with a high degree of data misfit. We hypothesize that the poor results are a function of a poorly constrained Earth model as well as noisy, high-frequency data being used in the inversion.
Abstract not provided.
Abstract not provided.
This report shows the results of constructing predictive atmospheric models for the Source Physics Experiments 1-6. Historic atmospheric data are combined with topography to construct an atmo- spheric model that corresponds to the predicted (or actual) time of a given SPE event. The models are ultimately used to construct atmospheric Green's functions to be used for subsequent analysis. We present three atmospheric models for each SPE event: an average model based on ten one- hour snap shots of the atmosphere and two extrema models corresponding to the warmest, coolest, windiest, etc. atmospheric snap shots. The atmospheric snap shots consist of wind, temperature, and pressure profiles of the atmosphere for a one-hour time window centered at the time of the predicted SPE event, as well as nine additional snap shots for each of the nine preceding years, centered at the time and day of the SPE event.