Publications

Results 26–36 of 36
Skip to search filters

A soft-landing waveform for actuation of a single-pole single-throw ohmic RF MEMS switch

Journal of Microelectromechanical Systems

Czaplewski, David A.; Dyck, Christopher D.; Sumali, Hartono S.; Massad, Jordan M.; Kuppers, Jaron D.; Reines, Isak C.; Cowan, William D.; Tigges, Chris P.

A soft-landing actuation waveform was designed to reduce the bounce of a single-pole single-throw (SPST) ohmic radio frequency (RF) microelectromechanical systems (MEMS) switch during actuation. The waveform consisted of an actuation voltage pulse, a coast time, and a hold voltage. The actuation voltage pulse had a short duration relative to the transition time of the switch and imparted the kinetic energy necessary to close the switch. After the actuation pulse was stopped, damping and restoring forces slowed the switch to near-zero velocity as it approached the closed position. This is referred to as the coast time. The hold voltage was applied upon reaching closure to keep the switch from opening. An ideal waveform would close the switch with near zero impact velocity. The switch dynamics resulting from an ideal waveform were modeled using finite element methods and measured using laser Doppler vibrometry. The ideal waveform closed the switch with an impact velocity of less than 3 cm/s without rebound. Variations in the soft-landing waveform closed the switch with impact velocities of 12.5 cm/s with rebound amplitudes ranging from 75 to 150 nm compared to impact velocities of 22.5 cm/s and rebound amplitudes of 150 to 200 nm for a step waveform. The ideal waveform closed the switch faster than a simple step voltage actuation because there was no rebound and it reduced the impact force imparted on the contacting surfaces upon closure. © 2006 IEEE.

More Details

MEMS-based arrays of micro ion traps for quantum simulation scaling

Blain, Matthew G.; Jokiel, Bernhard J.; Tigges, Chris P.

In this late-start Tier I Seniors Council sponsored LDRD, we have designed, simulated, microfabricated, packaged, and tested ion traps to extend the current quantum simulation capabilities of macro-ion traps to tens of ions in one and two dimensions in monolithically microfabricated micrometer-scaled MEMS-based ion traps. Such traps are being microfabricated and packaged at Sandia's MESA facility in a unique tungsten MEMS process that has already made arrays of millions of micron-sized cylindrical ion traps for mass spectroscopy applications. We define and discuss the motivation for quantum simulation using the trapping of ions, show the results of efforts in designing, simulating, and microfabricating W based MEMS ion traps at Sandia's MESA facility, and describe is some detail our development of a custom based ion trap chip packaging technology that enables the implementation of these devices in quantum physics experiments.

More Details

Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers

Koleske, Daniel K.; Shul, Randy J.; Follstaedt, D.M.; Provencio, P.N.; Allerman, A.A.; Wright, Alan F.; Missert, Nancy A.; Baca, A.G.; Briggs, R.D.; Marsh, Philbert F.; Tigges, Chris P.

GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.

More Details

Self-heating study of an AlGaN/GaN-based heterostructure field effect transistor using ultraviolet micro-Raman scattering

Proposed for publication in Applied Physics Letters.

Kurtz, S.R.; Tigges, Chris P.; Allerman, A.A.; Baca, A.G.

We report micro-Raman studies of self-heating in an AlGaN/GaN heterostructure field-effect transistor using below (visible 488.0 nm) and near (UV 363.8 nm) GaN band-gap excitation. The shallow penetration depth of the UV light allows us to measure temperature rise ({Delta}T) in the two-dimensional electron gas (2DEG) region of the device between drain and source. Visible light gives the average {Delta}T in the GaN layer, and that of the SiC substrate, at the same lateral position. Combined, we depth profile the self-heating. Measured {Delta}T in the 2DEG is consistently over twice the average GaN-layer value. Electrical and thermal transport properties are simulated. We identify a hotspot, located at the gate edge in the 2DEG, as the prevailing factor in the self-heating.

More Details

Quantum computing accelerator I/O : LDRD 52750 final report

Tigges, Chris P.; Tigges, Chris P.; Modine, N.A.; Pierson, Lyndon G.; Ganti, Anand G.; Schroeppel, Richard C.

In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work.

More Details

GaAs MOEMS Technology

Spahn, Olga B.; Fuller, Charles T.; Bauer, Thomas M.; Sullivan, Charles T.; Grossetete, Grant G.; Cich, Michael C.; Tigges, Chris P.; Reno, J.L.; Peake, Gregory M.; Klem, John F.

Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vital step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.

More Details
Results 26–36 of 36
Results 26–36 of 36