Publications

Results 1–25 of 39
Skip to search filters

Instrumented Photovoltaic Modules for Environmental Characterization and Simulation Model Validation

Phillips, Matthew R.; Hartley, James Y.; Maes, Ashley M.; Robinson, Charles D.

Photovoltaic modules are subjected to various mechanical stressors in their deployment environments, ranging from installation handling to wind and snow loads. Damage incurred during these mechanical events has the potential to initiate subsequent degradation mechanisms, reducing useful module lifespan. Thus, characterizing the mechanical state of photovoltaic modules is pertinent to the development of reliable packaging designs. In this work, photovoltaic modules with strain gauges directly incorporated into the module laminate were fabricated and subjected to mechanical loading to characterize internal strains within the module when under load. These experimental measurements were then compared against results obtained by high-fidelity finite-element simulations. The simulation results showed reasonable agreement in the strain values over time; however, there were large discrepancies in the magnitudes of these strains. Both the instrumentation technique and the finite-element simulations have areas where they can improve. These areas of improvement have been documented. Despite the observed discrepancies between the experimental and simulated results, the module instrumentation proved to be a useful gauge in monitoring and characterizing the mechanical state. With some process improvements, this method could potentially be applied to other environments that a photovoltaic module will encounter in its lifetime that are known to cause damage and degrade performance.

More Details

Optical Detection of Crack Separation in Si PV Modules

Braid, Jennifer L.; Stein, Joshua S.; Robinson, Charles D.; Harwood, Duncan H.

Studying the mechanical behavior of silicon cell fractures is critical for understanding changes in PV module performance. Traditional methods of detecting cell cracks, e.g., electroluminescence (EL) imaging, utilize electrical changes and defects associated with cell fracture. Therefore, these methods reveal crack locations, but do not operate at the time or length scales required to accurately measure other physical properties of cracks, such as separation width and behavior under dynamic loads.

More Details

Effects of Solar Angle of Incidence on Intramodular Photovoltaic Irradiance Uniformity

Conference Record of the IEEE Photovoltaic Specialists Conference

Coston, Joseph; Robinson, Charles D.; King, Bruce H.; Braid, Jennifer L.; Riley, Daniel R.; Stein, Joshua S.

Using a photovoltaic module where each of the 72 cells are monitored separately, we have measured the optical effects of sunlight hitting the module at different angles. As the angle of incidence increased to 60-70 degrees, we observed an increase in the nonuniformity of the light reaching the cells across the module area (up to 4% as measured by resulting cell current). The effect is hypothesized to be the result of a combination of two mechanisms: light trapping within the top sheet glass layer and reflection from the aluminum frame at the edge of the module. We confirm these effects with time-series measurements on split reference cells fielded outdoors, and with ray-tracing modeling to determine how this phenomenon may affect PV performance and module characterization.

More Details

Nishati Prototype 72-Cell Endurance Modules (Test Report)

King, Bruce H.; Yellowhair, Julius; Robinson, Charles D.

US Manufacturer Nishati provided three prototype, 72-cell photovoltaic modules to Sandia for characterization under the US Department of Energy Small Business Voucher program. Nishati is developing the Endurance© product to address the stringent requirements associated with PV system installations sited near airports and military bases. These prototype modules are uniquely constructed of a polymeric matrix and an internal honeycomb structural element. Target features of the module design are reduced reflectivity from the front surface and reduced weight. Sandia applied a variety of in-house characterization methods to these modules with the goal of validating performance and identifying any areas for improvement. Reflectance testing revealed extremely low specular reflection, dramatically surpassing the performance of industry standard PV panels. Electrical performance testing validated performance in line with expectations for similar size and power class modules. Complimentary to reflection testing, outdoor angle of incidence testing indicated performance far exceeding expectations for industry standard PV panels. It is possible that the extremely low reflectance properties of these modules will convey an advantage in annual energy production in comparison to industry standard modules. Detailed performance modeling and experimental field validation would be required to verify this possible advantage. During the course of this testing, no obvious deficiencies in this module design were discovered. It is recommended that Nishati and Sandia proceed to the final Task associated with the SBV award. This final task will involve fielding modules at Sandia for reliability and energy production validation.

More Details

PV Lifetime Project: Measuring PV Module PerformanceDegradation: 2018 Indoor Flash TestingResults

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

Stein, Joshua S.; Robinson, Charles D.; King, Bruce H.; Deline, Chris; Rummel, Steve; Sekulic, Bill

Photovoltaic (PV) module and system performance degradation is being measured by periodic flash testing of fielded PV modules at three sites. As of early 2018, results from modules fielded in New Mexico and Colorado are now available. These data indicate that module degradation varies significantly between module types and can also vary between modules of the same model. In addition, degradation rates for some module types appear to vary over time. Great care is made to control for stability and repeatability in the measurements over time, but there is still a +/-0.5% uncertainty in flash test stability. Therefore, it will take several more years for degradation rate results to be known with higher confidence.

More Details

Application of the Sandia Array Performance Model to Assess Multiyear Performance of Fielded CIGS PV Arrays

2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC

King, Bruce H.; Robinson, Charles D.; Carmignani, Craig K.; Riley, Daniel R.; Jones, C.B.

Copper indium gallium (di)serenade (CIGS) photovoltaic cell technology has long been promoted as a cost-effective alternative to traditional PV modules based on crystalline silicon cells. However, adoption of CIGS is hindered by significant uncertainties regarding long-term reliability and performance stability, as well as a lack of accurate modeling tools to predict CIGS system performance. Sandia is conducting a multi-year study of fielded CIGS systems that range in age from 3-6 years and represent a cross-section of commercial manufacturing and packaging. Most of these arrays include modules that were thoroughly characterized prior to deployment. In this paper, we explore uncertainty in the long-term reliability and performance stability of CIGS modules by analyzing real world performance and degradation rates of these systems.

More Details

Comparative Angle of Incidence Characterization of Utility Grade Photovoltaic Modules

King, Bruce H.; Robinson, Charles D.

Angle of incidence response of a photovoltaic module describes its light gathering capability when incident sunlight is at an orientation other than normal to the module's surface. At low incident angles (i.e. close to normal), most modules have similar responses. However, at increasing incident angles, reflective losses dominate response and relative module performance becomes differentiated. Relative performance in this range is important for understanding the potential power output of utility - scale ph otovoltaic systems. In this report, we document the relative angle of incidence response of four utility - grade panels to each other and to four First Solar modules. We found that response was nearly identical between all modules up to an incident angle of ~55°. At higher angles, differences of up to 5% were observed. A module from Yingli was the best performing commercial module while a First Solar test module with a non - production anti - reflective coating was the best overall performer. This page left blank

More Details
Results 1–25 of 39
Results 1–25 of 39