Publications

Results 176–200 of 213
Skip to search filters

Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface

Bryan, Charles R.; Dewers, Thomas D.; Heath, Jason; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen M.

In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for monitoring ganglion formation in the subsurface.

More Details

Overview of Total System Model Used for the 2008 Performance Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain Nevada

Proposed for publication in Reliability Engineering and System Safety.

Hansen, Clifford H.; Olszewska-Wasiolek, Maryla A.; Bryan, Charles R.; Hardin, Ernest H.; Jarek, Russell L.; Mariner, Paul M.; Mattie, Patrick D.; Sassani, David C.; Sevougian, Stephen D.; Stein, Joshua S.

Abstract not provided.

Computational investigation of thermal gas separation for CO2 capture

Torczynski, J.R.; Gallis, Michail A.; Brooks, Carlton F.; Brady, Patrick V.; Bryan, Charles R.

This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 09-1351, 'Computational Investigation of Thermal Gas Separation for CO{sub 2} Capture'. Thermal gas separation for a binary mixture of carbon dioxide and nitrogen is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Molecular models for nitrogen and carbon dioxide are developed, implemented, compared to theoretical results, and compared to several experimental thermophysical properties. The molecular models include three translational modes, two fully excited rotational modes, and vibrational modes, whose degree of excitation depends on the temperature. Nitrogen has one vibrational mode, and carbon dioxide has four vibrational modes (two of which are degenerate). These models are used to perform a parameter study for mixtures of carbon dioxide and nitrogen confined between parallel walls over realistic ranges of gas temperatures and nominal concentrations of carbon dioxide. The degree of thermal separation predicted by DSMC is slightly higher than experimental values and is sensitive to the details of the molecular models.

More Details

Waste package corrosion studies using small mockup experiments

Materials Research Society Symposium Proceedings

Anderson, B.E.; Helean, Katheryn B.; Bryan, Charles R.; Brady, Patrick V.; Ewing, R.C.

Understanding the corrosion of spent nuclear fuel (SNF) and the subsequent mobilization of released radionuclides, particularly under oxidizing conditions, is one of the key issues in evaluating the long-term performance of a nuclear waste repository. However, the large amounts of iron in the metal waste package may create locally reducing conditions that would lower corrosion rates for the SNF, as well as reduce the solubility of some key radionuclides, e.g., Tc and Np. In order to investigate the interactions among SNF-waste package-fluids, four smallscale (∼1:40 by length) waste package mockups were constructed using metals similar to those proposed for use in waste packages at the proposed repository at Yucca Mountain. Each mockup experiment differed with respect to water input, exposure to the atmosphere, and temperature. Simulated Yucca Mountain process water (YMPW) was injected into three of the mockups at a rate of 200 μL per day for five days a week using a calibrated needle syringe. The YMPW was prepared by equilibrating 50 mg/L silica as sodium metasilicate with air, and adding enough HC1 to lower the pH to 7.6 in contact with an excess of powdered calcite. X-ray powder diffraction and scanning electron microscopy confirm that, where corrosion occurred, the dominant corrosion product in all cases was magnetite. In the high temperature (60°C) experiment, hematite and a fibrous, Fe-O-Cl phase were also identified. The Fe(II)/Fe(III) ratios measured in the corrosion products using a wet chemistry technique indicate extremely low oxygen fugacities (10-36 bar). Experiments are in progress in which 0.1g powdered UO2 was included in the mock-up in order to investigate the relative kinetics of Fe and U oxidation and to identify the U corrosion products formed under these conditions. © 2008 Materials Research Society.

More Details
Results 176–200 of 213
Results 176–200 of 213