Publications

Results 76–100 of 213
Skip to search filters

Infrared and Raman spectroscopy of α-ZrW2O8: A comprehensive density functional perturbation theory and experimental study

Journal of Raman Spectroscopy

Weck, Philippe F.; Gordon, Margaret E.; Greathouse, Jeffery A.; Bryan, Charles R.; Meserole, Stephen M.; Rodriguez, Mark A.; Payne, Clay P.; Kim, Eunja

Cubic zirconium tungstate (α-ZrW2O8), a well-known negative thermal expansion material, has been investigated within the framework of density functional perturbation theory (DFPT), combined with experimental characterization to assess and validate computational results. Using combined Fourier transform infrared measurements and DFPT calculations, new and extensive assignments were made for the far-infrared (<400 cm−1) spectrum of α-ZrW2O8. A systematic comparison of DFPT-simulated infrared, Raman, and phonon density-of-state spectra with Fourier transform far-/mid-infrared and Raman data collected in this study, as well as with available inelastic neutron scattering measurements, shows the superior accuracy of the PBEsol exchange-correlation functional over standard PBE calculations for studying the spectroscopic properties of this material.

More Details

Properties of brines formed by deliquescence of sea-salt aerosols

NACE - International Corrosion Conference Series

Bryan, Charles R.; Schindelholz, Eric J.

For long-term dry storage, most spent nuclear fuel in the United States is placed in welded 304 SS or 316 SS canisters that are stored within passively ventilated overpacks. As the canisters cool, sea-salt aerosols deposited on the canister surfaces will deliquesce to form potentially corrosive brines. We have used thermodynamic modeling to predict the chemical composition of the brines that form by deliquescence of sea-salt aerosols, and to estimate brine volumes and salt/brine volume ratios as a function of temperature and atmospheric relative humidity. We have also mixed representative brines and measured the physical and chemical properties of those brines over a range of temperatures. These data provide a matrix that can be used to predict the evolution of deliquescent brine properties over time on storage canister surfaces, as the canisters cool and surface relative humidity increases. Brine volumes and properties affect corrosion kinetics and damage distributions on the metal surface, and may offer important constraints on the expected rate and extent of corrosion and the timing of SCC crack initiation. The predicted brines do not consider reactions with atmospheric gases that are known to affect sea-salt particle and deliquescent brine compositions under field conditions. The potential effects of such reactions are discussed, and preliminary modeling and experimental data are presented.

More Details

Analysis of Samples Collected from the Surface of Interim Storage Canisters at Calvert Cliffs in June 2017: Revision 01

Bryan, Charles R.; Schindelholz, Eric J.

In June 2017, dust and salt samples were collected from the surface of Spent Nuclear Fuel (SNF) dry storage canisters at the Calvert Cliffs Nuclear Power Plant. The samples were delivered to Sandia National laboratories for analysis. Two types of samples were collected: filter-backed Scotch-Brite TM pads were used to collect dry dust samples for characterization of salt and dust morphologies and distributions; and Saltsmart TM test strips were used to collect soluble salts for determining salt surface loadings per unit area. After collection, the samples were sealed into plastic sleeves for shipping. Condensation within the sleeves containing the Scotch-Brite TM samples remobilized the salts, rendering them ineffective for the intended purpose, and also led to mold growth, further compromising the samples; for these reasons, the samples were not analyzed. The SaltSmart TM samples were unaffected and were analyzed by ion chromatography for major anions and cations. The results of those analyses are presented here.

More Details

FY17 Status Report: Research on Stress Corrosion Cracking of SNF Interim Storage Canisters

Schindelholz, Eric J.; Bryan, Charles R.; Alexander, Christopher L.

This progress report describes work done in FY17 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY17 refined our understanding of the chemical and physical environment on canister surfaces, and evaluated the relationship between chemical and physical environment and the form and extent of corrosion that occurs. The SNL corrosion work focused predominantly on pitting corrosion, a necessary precursor for SCC, and process of pit-to-crack transition; it has been carried out in collaboration with university partners. SNL is collaborating with several university partners to investigate SCC crack growth experimentally, providing guidance for design and interpretation of experiments.

More Details

Analysis of Corrosion Residues Collected from the Aluminum Basket Rails of the High-Burnup Demonstration Cask

Bryan, Charles R.

On September, 2015, an inspection was performed on the TN-32B cask that will be used for the high-burnup demonstration project. During the survey, wooden cribbing that had been placed within the cask eleven years earlier to prevent shifting of the basket during transport was removed, revealing two areas of residue on the aluminum basket rails, where they had contacted the cribbing. The residue appeared to be a corrosion product, and concerns were raised that similar attack could exist at more difficult-to-inspect locations in the canister. Accordingly, when the canister was reopened, samples of the residue were collected for analysis. This report presents the results of that assessment, which determined that the corrosion was due to the presence of the cribbing. The corrosion was associated with fungal material, and fungal activity likely contributed to an aggressive chemical environment. Once the cask has been cleaned, there will be no risk of further corrosion.

More Details

Final Report: Characterization of Canister Mockup Weld Residual Stresses

Enos, David E.; Bryan, Charles R.

Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the work described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.

More Details

Analysis of Dust Samples Collected from an In-Service Interim Storage System at the Maine Yankee Nuclear Site

Bryan, Charles R.; Enos, David E.

In July, 2016, the Electric Power Research Institute and industry partners performed a field test at the Maine Yankee Nuclear Site, located near Wiscasset, Maine. The primary goal of the field test was to evaluate the use of robots in surveying the surface of an in-service interim storage canister within an overpack; however, as part of the demonstration, dust and soluble salt samples were collected from horizontal surfaces within the interim storage system. The storage system is a vertical system made by NAC International, consisting of a steel-lined concrete overpack containing a 304 stainless steel (SS) welded storage canister. The canister did not contain spent fuel but rather greater-than-class-C waste, which did not generate significant heat, limiting airflow through the storage system. The surfaces that were sampled for deposits included the top of the shield plug, the side of the canister, and a shelf at the bottom of the overpack, just below the level of the pillar on which the canister sits. The samples were sent to Sandia National Laboratories for analysis. This report summarizes the results of those analyses. Because the primary goal of the field test was to evaluate the use of robots in surveying the surface of the canister within the overpack, collection of dust samples was carried out in a qualitative fashion, using paper filters and sponges as the sampling media. The sampling focused mostly on determining the composition of soluble salts present in the dust. It was anticipated that a wet substrate would more effectively extract soluble salts from the surface that was sampled, so both the sponges and the filter paper were wetted prior to being applied to the surface of the metal. Sampling was accomplished by simply pressing the damp substrate against the metal surface for two minutes, and then removing it. It is unlikely that the sampling method quantitatively collected dust or salts from the metal surface; however, both substrates did extract a significant amount of material. The paper filters collected both particles, trapped within the cellulose fibers of the filter, and salts, while the sponges collected only the soluble salts, with very few particles. Upon delivery to Sandia, both collection media were analyzed using the same methods. The soluble salts were leached from the substrates and analyzed via ion chromatography, and insoluble minerals were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy. The insoluble minerals were found to consist largely of terrestrially-derived mineral fragments, dominantly quartz and biotite. Large (mm-sized) aggregates of calcium carbonate, calcium silicate, and calcium aluminum silicate were also present. The aggregates had one flat, smooth surface and one well crystallized surface, and were interpreted to be efflorescence on the inside of the overpack and in the vent, formed by seepage of cement pore fluids through joints in the steel liner of the overpack. Such efflorescence was commonly observed during the boroscope inspection of the storage system at the site. The material may have flaked off and fallen to the point where the dust was collected, or may have brushed off onto the sponges when the robot was retrieved through the inlet vent. Chemical analysis showed that the soluble salts on the shield plug were Ca- and Na-rich, with lesser K and minor Mg; the anionic component was dominated by SO 4 and Cl, with minor amounts of NO 3 . The cation composition of the soluble salts from the overpack shelf and the canister surface was similar to the filter samples, but the anions differed significantly, being dominantly NO 3 with lesser Cl and only trace SO 4 . The salts appear to represent a mixture of sea-salts (probably partially converted to nitrates and sulfates by particle-gas conversion reactions) and continental salt aerosols. Ammonium, a common component in continental aerosols, was not observed and may have been lost by degassing from the canister surface or after collection during sample storage and transportation. The demonstration at Maine Yankee has shown that the robot and sampling method used for the test can successfully be used to collect soluble salts from metal surfaces within an interim storage system overpack. The results were consistent from sample to sample, suggesting that a representative sample of the soluble salts was being collected. However, it is unlikely that the salt samples collected here represent quantitative sampling of the salts on the surfaces evaluated; for that reason, chloride densities per unit area are not presented here. It should also be noted that the relevance to storage systems at the site that contain SNF may be limited, because a heat- generating canister will result in greater airflow through the overpack, affecting dust deposition rates and possibly salt compositions.

More Details
Results 76–100 of 213
Results 76–100 of 213