Publications

Results 26–50 of 213
Skip to search filters

SNF Interim Storage Canister Corrosion and Surface Environment Investigations (FY2020 Status Report)

Schaller, Rebecca S.; Knight, Andrew W.; Bryan, Charles R.; Nation, Brendan L.; Montoya, Timothy M.; Katona, Ryan M.

This progress report describes work performed during FY20 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY20 further defined our understanding of the potential chemical and physical environment present on canister surfaces, evaluated the relationship between the environment and the resultant corrosion that occurs, and initiated crack growth rate testing under relevant environmental conditions. In FY20, work to define dry storage canister surface environments included several tasks. First, collection of dust deposition specimens from independent spent fuel storage installation (ISFSI) site locations helped to establish a more complete understanding of the potential chemical environment formed on the canister. Second, the predicted evolution of canister surface relative humidity RH) values was estimated using ISFSI site weather data and the horizontal canister thermal model used by the SNL probabilistic SCC model. These calculations determined that for typical ISFSI weather conditions, seasalt deliquescence to produce MgCl2-rich brines could occur in less than 20 years at the coolest locations on the canister surface, and, even after nearly 300 years, conditions for NaCl deliquescence (75% RH) are not reached. This work illustrates the importance of understanding the stability of MgCl2-rich brines on the heated canister surface, and the potential impact of brine composition on corrosion processes, including pitting and stress corrosion cracking. In an additional study, the description of the canister surface environment was refined in order to define more realistic corrosion testing environments including diurnal cycles, soluble salt chemistries, and inert mineral particles. The potential impacts of these phenomena on canister corrosion are being evaluated experimentally. Finally, work over the past few years to evaluate the stability of magnesium chloride brines continued in FY20. MgCl2 degassing experiments were carried out, confirming that MgCl2 brines slowly degas HCl on heated surfaces, converting to less deliquescent magnesium hydroxychloride phases and potentially leading to brine dryout.

More Details

Use of in situ Raman spectroelectrochemical technique to explore atmospheric corrosion in marine-relevant environments

Electrochemistry Communications

Katona, Ryan M.; Kelly, R.G.; Bryan, Charles R.; Schaller, Rebecca S.; Knight, A.W.

Here, for the first time, we demonstrate the use of an in situ spectroelectrochemical Raman technique to explore simulated atmospheric corrosion scenarios with a variable boundary layer thickness (δ). The effects of solution flow rate on oxygen concentration and δ were explored. It was found solution regeneration is necessary to prevent oxygen depletion in the Raman cell. It was further shown that by increasing the solution flow rate, the effective δ decreases and allows for the investigation of atmospheric corrosion scenarios. Finally, the technique developed was utilized to explore the effect of precipitation on the cathodic behavior of SS304L in dilute MgCl2. During cathodic polarization, evidence supports previous observations that magnesium hydroxide species are kinetically favored over the thermodynamically predicted magnesium carbonate.

More Details

Corrosion-Resistant Coatings for Mitigation and Repair of Spent Nuclear Fuel Dry Storage Canisters

Knight, Andrew W.; Schaller, Rebecca S.; Bryan, Charles R.; Montoya, Timothy M.; Parey, Alana M.; Carpenter, Jacob C.; Maguire, Makeila M.

This report summarizes the results of a literature survey on coatings and surface treatments that are used to provide corrosion protection for exposed metal surfaces. The coatings are discussed in the context of being used on stainless steel spent nuclear fuel (SNF) dry storage canisters for potential prevention or repair of corrosion and stress corrosion cracking. The report summarizes the properties of different coating classes, including the mechanisms of protection, their physical properties, and modes of degradation (thermal, chemical, radiological). Also discussed are the current standard technologies for application of the coatings, including necessary surface pretreatments (degreasing, rust removal, grinding) and their effects on coating adhesion and performance. The coatings are also classified according their possible use for in situ repair; ex situ repair, requiring removal from the overpack; and ex situ prevention, or application prior to fuel loading to provide corrosion protection over the lifetime of the canister.

More Details

Molecular dynamics simulation of zirconium tungstate amorphization and the amorphous-crystalline interface

Journal of Physics Condensed Matter

Greathouse, Jeffery A.; Weck, Philippe F.; Gordon, Margaret E.; Kim, Eunja; Bryan, Charles R.

Classical molecular dynamics (MD) simulations were performed to provide a conceptual understanding of the amorphous-crystalline interface for a candidate negative thermal expansion (NTE) material, ZrW2O8. Simulations of pressure-induced amorphization at 300 K indicate that an amorphous phase forms at pressures of 10 GPa and greater, and this phase persists when the pressure is subsequently decreased to 1 bar. However, the crystalline phase is recovered when the slightly distorted 5 GPa phase is relaxed to 1 bar. Simulations were also performed on a two-phase model consisting of the high-pressure amorphous phase in direct contact with the crystalline phase. Upon equilibration at 300 K and 1 bar, the crystalline phase remains unchanged beyond a thin layer of disrupted structure at the crystalline-amorphous interface. Differences in local atomic structure at the interface are quantified from the simulation trajectories.

More Details

Novel Zoned Waste-forms for High-Priority Radionuclide Waste Streams

Bryan, Charles R.; Gordon, Margaret E.; Greathouse, Jeffery A.; Weck, Philippe F.; Kim, Eunja

This report describes the potential of a novel class of materials--a-ZrW 2 0 8 , Zr 2 WP 2 0 12 , and related compounds that contract upon amorphization as possible radionuclide waste-forms. The proposed ceramic waste-forms would consist of zoned grains, or sintered ceramics with center- loaded radionuclides and barren shells. Radiation-induced amorphization would result in core shrinkage but would not fracture the shells or overgrowths, maintaining isolation of the radionuclide. In this report, we have described synthesis techniques to produce phase-pure forms of the materials, and how to fully densify those materials. Structural models for the materials were developed and validated using DFPT approaches, and radionuclide substitution was evaluated; U(IV), Pu(IV), Tc(IV) and Tc(VII) all readily substitute into the material structures. MD modeling indicated that strain associated with radiation-induced amorphization would not affect the integrity of surrounding crystalline materials, and these results were validated via ion beam experimental studies. Finally, we have evaluated the leach rates of the barren materials, as determined by batch and flow-through reactor experiments. ZrW 2 0 8 leaches rapidly, releasing tungstate while Zr is retained as a solid oxide or hydroxide. Tungsten release rates remain elevated over time and are highly sensitive to contact times, suggesting that this material will not be an effective waste-form. Conversely, tungsten releases rates from Zr2WP2012 rapidly drop, show little dependence on short-term changes in fluid contact time, and in over time, become tied to P release rates. The results presented here suggest that this material may be a viable waste-form for some hard-to-handle radionuclides such as Pu and Tc. ACKNOWLEDGEMENTS The authors acknowledge the contributions to this report from Sandia National Laboratories researchers Steven Meserole, Mark Rodriguez, Clay Payne, Tim Boyle, Nate Padilla, Khalid Hattar, Anthony Monterrosa, Trevor Clark, and Daniel Perry.

More Details

Elucidating Structure-Spectral Property Relationships of Negative Thermal Expansion Zr2(WO4)(PO4)2: A First-Principles Study with Experimental Validation

Journal of Physical Chemistry C

Weck, Philippe F.; Kim, Eunja; Gordon, Margaret E.; Greathouse, Jeffery A.; Meserole, Stephen M.; Bryan, Charles R.

The phonon, infrared, and Raman spectroscopic properties of zirconium tungsten phosphate, Zr2(WO4)(PO4)2 (space group Pbcn, IT No. 60; Z = 4), have been extensively investigated using density functional perturbation theory (DFPT) calculations with the Perdew, Burke, and Ernzerhof exchange-correlation functional revised for solids (PBEsol) and validated by experimental characterization of Zr2(WO4)(PO4)2 prepared by hydrothermal synthesis. Using DFPT-simulated infrared, Raman, and phonon density-of-state spectra combined with Fourier transform infrared and Raman measurements, new comprehensive and extensive assignments have been made for the spectra of Zr2(WO4)(PO4)2, resulting in the characterization of its 29 and 34 most intense IR- and Raman-active modes, respectively. DFPT results also reveal that ν1(PO4) symmetric stretching and ν3(PO4) antisymmetric stretching bands have been interchanged in previous Raman experimental assignments. Negative thermal expansion in Zr2(WO4)(PO4)2 appears to have very limited impact on the spectral properties of this compound. This work shows the high accuracy of the PBEsol exchange-correlation functional for studying the spectroscopic properties of crystalline materials using first-principles methods.

More Details
Results 26–50 of 213
Results 26–50 of 213