Publications

29 Results
Skip to search filters

High-Brightness Ultraviolet Lasers for Leap-Ahead National Security Applications

Skogen, Erik J.; Fortuna, S.A.; Allerman, A.A.; Smith, Michael; Alford, Charles A.; Crawford, Mary H.

In this project we endeavored to improve the state-of-the-art in UV lasers diodes. We made important advancements in several fronts from modeling, to epitaxial growth, to fabrication, and testing. Throughout the project it became clear that polarization doping would be able to help advance the state of laser diode design in terms of electrical performance, but the optical design would need to be investigated to ensure that a 2D guided mode would be supported. New capability in optical modeling using commercial software demonstrated that the new polarization doped structures would be viable. New capability in pulsed testing was established to reach the current and voltage required. Our fabricated devices had some parasitic electrical paths which hindered performance that we were ultimately unable to overcome in the project timeframe. We do believe that future projects will be able to leverage the advancements made under this project.

More Details

Heterogeneous Integration of Silicon Electronics and Compound Semiconductor Optoelectronics for Miniature RF Photonic Transceivers

Nordquist, Christopher N.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, Caroline S.; Saugen, J.M.; Forbes, T.; Wood, Michael G.; Jordan, Matthew J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, Christopher M.; Serkland, Darwin K.; Dean, Kenneth A.

Abstract not provided.

Heterogeneous integration of silicon electronics and compound semiconductor optoelectronics for miniature rf photonic transceivers

ECS Transactions

Nordquist, C.D.; Skogen, Erik J.; Fortuna, S.A.; Hollowell, Andrew E.; Hemmady, C.S.; Saugen, J.M.; Forbes, T.; Wood, M.G.; Jordan, Matthew J.; McClain, Jaime L.; Lepkowski, Stefan M.; Alford, Charles A.; Peake, Gregory M.; Pomerene, Andrew P.; Long, C.M.; Serkland, Darwin K.; Dean, Kenneth A.

Heterogeneous Integration (HI) may enable optoelectronic transceivers for short-range and long-range radio frequency (RF) photonic interconnect using wavelength-division multiplexing (WDM) to aggregate signals, provide galvanic isolation, and reduce crosstalk and interference. Integration of silicon Complementary Metal-Oxide-Semiconductor (CMOS) electronics with InGaAsP compound semiconductor photonics provides the potential for high-performance microsystems that combine complex electronic functions with optoelectronic capabilities from rich bandgap engineering opportunities, and intimate integration allows short interconnects for lower power and latency. The dominant pure-play foundry model plus the differences in materials and processes between these technologies dictate separate fabrication of the devices followed by integration of individual die, presenting unique challenges in die preparation, metallization, and bumping, especially as interconnect densities increase. In this paper, we describe progress towards realizing an S-band WDM RF photonic link combining 180 nm silicon CMOS electronics with InGaAsP integrated optoelectronics, using HI processes and approaches that scale into microwave and millimeter-wave frequencies.

More Details

Hybrid Integration of III-V Solar Microcells for High-Efficiency Concentrated Photovoltaic Modules

IEEE Journal of Selected Topics in Quantum Electronics

Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Cruz-Campa, Jose L.; Alford, Charles A.; Sanchez, Carlos A.; Nielson, Gregory N.; Okandan, Murat; Sweatt, W.C.; Jared, Bradley H.; Saavedra, Michael; Miller, William; Keeler, Gordon A.; Paap, Scott M.; Mudrick, John; Lentine, Anthony; Resnick, Paul; Gupta, Vipin; Nelson, Jeffrey; Li, Lan; Li, Duanhui; Gu, Tian; Hu, Juejun

The design, fabrication, and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process that involved significant processing including the removal of the III-V substrate.

More Details

Compound Semiconductor Integrated Photonics for Avionics

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Cajas, Florante G.; Overberg, Mark E.; Peake, Gregory M.; Wendt, J.R.; Chow, Weng W.; Lentine, Anthony L.; Nelson, Jeffrey S.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Sanchez, Carlos A.; Pipkin, Jennifer R.; Girard, Gerald R.; Nielson, Greg N.; Cruz-Campa, Jose L.; Okandan, Murat O.

Abstract not provided.

Wavelength Conversion Arrays for Optical and X-Ray Diagnostics at Z

Skogen, Erik J.; Dolan, Daniel H.; Vawter, Gregory A.; Tauke-Pedretti, Anna; Peake, Gregory M.; Alford, Charles A.; Cajas, Florante G.

Optical diagnostics play a central role in dynamic compression research. Currently, streak cameras are employed to record temporal and spectroscopic information in single-event experiments, yet are limited in several ways; the tradeoff between time resolution and total record duration is one such limitation. This project solves the limitations that streak cameras impose on dynamic compression experiments while reducing both cost and risk (equipment and labor) by utilizing standard high-speed digitizers and commercial telecommunications equipment. The missing link is the capability to convert the set of experimental (visible/x-ray) wavelengths to the infrared wavelengths used in telecommunications. In this report, we describe the problem we are solving, our approach, our results, and describe the system that was delivered to the customer. The system consists of an 8-channel visible-to- infrared converter with > 2 GHz 3-dB bandwidth.

More Details

Microsystem Enabled Photovoltaics

Nielson, Gregory N.; Cruz Campa, Jose L.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Jared, Bradley H.; Resnick, Paul J.; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Biefeld, Robert M.; Langlois, Eric L.; Yang, Benjamin B.; Koleske, Daniel K.; Wierer, Jonathan J.; Miller, William K.; Elisberg, Brenton E.; Zamora, David J.; Luna, Ian L.; Saavedra, Michael P.; Alford, Charles A.; Ballance, Mark H.; Wiwi, Michael W.; Samora, S.; Chavez, Julie C.; Pipkin, Jennifer R.; Nguyen, Janet N.; Anderson, Ben A.; Gu, Tian G.; Agrawal, Gautum A.; Nelson, Jeffrey S.

Abstract not provided.

Photonic integration at sandia national laboratories

Integrated Photonics Research, Silicon and Nanophotonics, IPRSN 2015

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Alford, Charles A.; Overberg, Mark E.; Peake, Gregory M.; Cajas, Florante G.

This talk will discuss recent work on photonic integration for applications in optical signal processing, digital logic, and fundamental device research with an emphasis on InP-based photonic integrated circuit technology. © 2015 OSA.

More Details

Layer disordering and doping compensation of an intersubband AlGaN/AlN superlattice by silicon implantation

Applied Physics Letters

Wierer, J.J.; Allerman, A.A.; Skogen, Erik J.; Tauke-Pedretti, Anna; Alford, Charles A.; Vawter, Gregory A.; Montano, Ines M.

Layer disordering and doping compensation of an Al0.028Ga0.972N/AlN superlattice by implantation are demonstrated. The as-grown sample exhibits intersubband absorption at ∼1.56 μm which is modified when subject to a silicon implantation. After implantation, the intersubband absorption decreases and shifts to longer wavelengths. Also, with increasing implant dose, the intersubband absorption decreases. It is shown that both layer disordering of the heterointerfaces and doping compensation from the vacancies produced during the implantation cause the changes in the intersubband absorption. Such a method is useful for removing absorption in spatially defined areas of III-nitride optoelectronic devices by, for example, creating low-loss optical waveguides monolithically that can be integrated with as-grown areas operating as electro-absorption intersubband modulators.

More Details

Flat plate concentrators with large acceptance angle enabled by micro cells and mini lenses: performance evaluation

Cruz-Campa, Jose L.; Anderson, Benjamin J.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, Jeffrey G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher N.; Nielson, Gregory N.; Saavedra, Michael P.; Ballance, Mark H.; Nguyen, Janet N.; Alford, Charles A.; Riley, Daniel R.; Okandan, Murat O.; Lentine, Anthony L.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Kratochvil, Jay A.

Abstract not provided.

Mutual injection locking of monolithically integrated coupled-cavity DBR lasers

IEEE Photonics Technology Letters

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Peake, Gregory M.; Overberg, Mark E.; Alford, Charles A.; Chow, Weng W.; Yang, Zhenshan Y.; Torres, David; Cajas, Florante

We present a photonic integrated circuit (PIC) composed of two strongly coupled distributed Bragg reflector (DBR) lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz. Mutual injection-locking and external injection-locking operation are compared. © 2011 IEEE.

More Details

Cascaded double ring resonator filter with integrated SOAs

2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OFC/NFOEC 2011

Tauke-Pedretti, Anna; Vawter, Gregory A.; Skogen, Erik J.; Peake, Gregory M.; Overberg, Mark E.; Alford, Charles A.; Torres, David; Cajas, Florante; Kalivoda, James

We present a filter consisting of cascaded ring resonators with integrated SOAs. The filter demonstrates an extinction ratio ≥30 dB, a free spectral range of 56 GHz and a FWHM bandwidth of 3 GHz. © 2011 Optical Society of America.

More Details

Enhanced frequency response in monolithically integrated coupled cavity lasers and electro-absorption modulator

Vawter, Gregory A.; Wendt, J.R.; Alford, Charles A.; Skogen, Erik J.; Overberg, Mark E.; Peake, Gregory M.; Chow, Weng W.; Yang, Zhenshan Y.

We present the bandwidth enhancement of an EAM monolithically integrated with two mutually injection-locked lasers. An improvement in the modulation efficiency and bandwidth are shown with mutual injection locking.

More Details

Developments in Pursuit of a Micro-Optic Gyroscope

Vawter, Gregory A.; Zubrzycki, Walter J.; Peake, Gregory M.; Alford, Charles A.; Hargett, Terry H.; Lacy-Salters, Betty J.; Hudgens, James J.

Rotation sensors (gyros) and accelerometers are essential components for all precision-guided weapons and autonomous mobile surveillance platforms. MEMS gyro development has been based primarily on the properties of moving mass to sense rotation and has failed to keep pace with the concurrent development of MEMS accelerometers because the reduction of size and therefore mass is substantially more detrimental to the performance of gyros than to accelerometers. A small ({approx}0.2 cu in), robust ({approx}20,000g), inexpensive ({approx}$500), tactical grade performance ({approx}10-20 deg/hr.) gyro is vital for the successful implementation of the next generation of ''smart'' weapons and surveillance apparatus. The range of applications (relevant to Sandia's mission) that are substantially enhanced in capability or enabled by the availability of a gyro possessing the above attributes includes nuclear weapon guidance, fuzing, and safing; synthetic aperture radar (SAR) motion compensation; autonomous air and ground vehicles; gun-launched munitions; satellite control; and personnel tracking. For example, a gyro of this capability would open for consideration more fuzing options for earth-penetration weapons. The MEMS gyros currently available are lacking in one or more of the aforementioned attributes. An integrated optical gyro, however, possesses the potential of achieving all desired attributes. Optical gyros use the properties of light to sense rotation and require no moving mass. Only the individual optical elements required for the generation, detection, and control of light are susceptible to shock. Integrating these elements immensely enhances the gyro's robustness while achieving size and cost reduction. This project's goal, a joint effort between organizations 2300 and 1700, was to demonstrate an RMOG produced from a monolithic photonic integrated circuit coupled with a SiON waveguide resonator. During this LDRD program, we have developed the photonic elements necessary for a resonant micro-optical gyro. We individually designed an AlGaAs distributed Bragg reflector laser; GaAs phase modulator and GaAs photodiode detector. Furthermore, we have fabricated a breadboard gyroscope, which was used to confirm modeling and evaluate signal processing and control circuits.

More Details
29 Results
29 Results