Publications

Results 26–50 of 96
Skip to search filters

Evaluation of a strain based failure criterion for the multi-constituent composite model under shock loading

EPJ Web of Conferences

Key, Christopher T.; Schumacher, Shane C.; Alexander, Charles S.

This study details and demonstrates a strain-based criterion for the prediction of polymer matrix composite material damage and failure under shock loading conditions. Shock loading conditions are characterized by high-speed impacts or explosive events that result in very high pressures in the materials involved. These material pressures can reach hundreds of kbar and often exceed the material strengths by several orders of magnitude. Researchers have shown that under these high pressures, composites exhibit significant increases in stiffness and strength. In this work we summarize modifications to a previous stress based interactive failure criterion based on the model initially proposed by Hashin, to include strain dependence. The failure criterion is combined with the multi-constituent composite constitutive model (MCM) within a shock physics hydrocode. The constitutive model allows for decomposition of the composite stress and strain fields into the individual phase averaged constituent level stress and strain fields, which are then applied to the failure criterion. Numerical simulations of a metallic sphere impacting carbon/epoxy composite plates at velocities up to 1000 m/s are performed using both the stress and strain based criterion. These simulation results are compared to experimental tests to illustrate the advantages of a strain-based criterion in the shock environment.

More Details

Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

Review of Scientific Instruments

Rovang, Dean C.; Lamppa, Derek C.; Cuneo, M.E.; Owen, A.C.; Mckenney, John M.; Johnson, Drew J.; Radovich, S.; Kaye, Ronald J.; McBride, Ryan D.; Alexander, Charles S.; Awe, T.J.; Slutz, S.A.; Sefkow, Adam B.; Haill, Thomas A.; Jones, Peter A.; Argo, J.W.; Dalton, D.G.; Robertson, Grafton K.; Waisman, Eduardo M.; Sinars, Daniel S.; Meissner, J.; Milhous, M.; Nguyen, D.N.; Mielke, C.H.

Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

More Details

Improved understanding of the dynamic response in anisotropic directional composite materials through the combination of experiments and modeling

Journal of Physics: Conference Series

Alexander, Charles S.; Key, C.T.; Schumacher, Shane C.

Recently there has been renewed interest in the dynamic response of composite materials; specifically low density epoxy matrix binders strengthened with continuous reinforcing fibers. This is in part due to the widespread use of carbon fiber composites in military, commercial, industrial, and aerospace applications. The design community requires better understanding of these materials in order to make full use of their unique properties. Planar impact testing was performed resulting in pressures up to 15 GPa on a unidirectional carbon fiber - epoxy composite, engineered to have high uniformity and low porosity. Results illustrate the anisotropic nature of the response under shock loading. Along the fiber direction, a two-wave structure similar to typical elastic-plastic response is observed, however, when shocked transverse to the fibers, only a single bulk shock wave is detected. At higher pressures, the epoxy matrix dissociates resulting in a loss of anisotropy. Greater understanding of the mechanisms responsible for the observed response has been achieved through numerical modeling of the system at the micromechanical level using the CTH hydrocode. From the simulation results it is evident that the observed two-wave structure in the longitudinal fiber direction is the result of a fast moving elastic precursor wave traveling in the carbon fibers ahead of the bulk response in the epoxy resin. Similarly, in the transverse direction, results show a collapse of the resin component consistent with the experimental observation of a single shock wave traveling at speeds associated with bulk carbon. Experimental and simulation results will be discussed and used to show where additional mechanisms, not fully described by the currently used models, are present. © Published under licence by IOP Publishing Ltd.

More Details

Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519)

Alexander, Charles S.; Haill, Thomas A.; Dalton, Devon D.; Rovang, Dean C.; Lamppa, Derek C.

The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

More Details
Results 26–50 of 96
Results 26–50 of 96