Basis set expansion for inverse problems in plasma diagnostic analysis
Review of Scientific Instruments
Abstract not provided.
Review of Scientific Instruments
Abstract not provided.
Proposed for publication in Review of Scientific Instruments.
Abstract not provided.
Review of Scientific Instruments
The 350-keV Cockroft-Walton accelerator at Sandia National laboratorys Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the 63Cu(n,2n) 62Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5 or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n) 4He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced 62Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given. © 2012 American Institute of Physics.
Review of Scientific Instruments
A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield. © 2012 American Institute of Physics.
Abstract not provided.
Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review STAB
Abstract not provided.
Abstract not provided.
Plasma Physics and Controlled Fusion
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.
Abstract not provided.
Abstract not provided.