Highly ordered gold nanocrystal (NC)/silica films are synthesized by self-assembly of water-soluble gold NC micelles and silica using a sol-gel spin coating technique. The optical properties are analyzed using ellipsometry and ultraviolet-visible spectroscopy. Transmission and absorption spectra were measured for wavelengths ranging from 200 to 2000 nm. The absorption spectra show a strong surface plasmon absorption band at {approx}520 nm for all samples. Charge transport behavior of the films was examined using metal-oxide-semiconductor (MOS) and metal-insulator-metal (MIM) structures. MOS capacitor samples exhibit charge storage with discharge behavior dominated by electron transport within the gold NC arrays. Low temperature current-voltage measurements on MIM devices reveal electrical conduction with a thermal activation energy of {approx}90 meV. For temperatures less than 100 K, the I-V characteristics of the NC film exhibits a strong coulomb blockade effect, with a threshold voltage of {approx}0.5 V measured at 78 K.
We report a simple, rapid approach to synthesize water-soluble and biocompatible fluorescent quantum dot (QD) micelles by encapsulation of monodisperse, hydrophobic QDs within surfactant/lipid micelles. Analyses of UV-vis and photo luminescence spectra, along with transmission electron microscopy, indicate that the water-soluble semiconductor QD micelles are monodisperse and retain the optical properties of the original hydrophobic QDs. The QD micelles were shown to be biocompatible and exhibited little or no aggregation when taken up by cultured rat hippocampal neurons.
A unique nanocrystalline, mesoporous PdO-SnO{sub 2} film exhibiting high sensitivity and selectivity to hydrogen gas at room temperature has been developed.
Gold nanocrystal(NC)/silica films are synthesized through self-assembly of water-soluble gold nanocrystal micelles and silica by sol-gel processing. Absorption and transmission spectra show a strong surface plasmon resonance absorption peak at {approx}520 nm. Angular excitation spectra of surface plasmon show a steep dip in the reflectivity curve at {approx}65{sup o} depending on the thickness and refractive index of the gold NC/silica film. A potential SPR sensor with enhanced sensitivities can be realized based on these gold NC/silica films.
Nature combines hard and soft materials, often in hierarchical architectures, to get synergistic, optimized properties with proven, complex functionalities. Emulating such natural designs in robust engineering materials using efficient processing approaches represents a fundamental challenge to materials chemists. This presentation will review progress on understanding so-called 'evaporation-induced silica/surfactant self-assembly' (EISA) as a simple, general means to prepare porous thin-film nanostructures. Such porous materials are of interest for membranes, low-dielectric-constant (low-k) insulators, and even 'nano-valves' that open and close in response to an external stimulus. EISA can also be used to simultaneously organize hydrophilic and hydrophobic precursors into hybrid nanocomposites that are optically or chemically polymerizable, patternable, or adjustable. In constructing composite structures, a significant challenge is how to controllably organize or define multiple materials on multiple length scales. To address this challenge, we have combined sol-gel chemistry with molecular self-assembly in several evaporation-driven processing procedures collectively referred to as evaporation-induced self-assembly (EISA). EISA starts with a silica/water/surfactant system diluted with ethanol to create a homogeneous solution. We rely on ethanol and water evaporation during dip-coating (or other coating methods) to progressively concentrate surfactant and silica in the depositing film, driving micelle formation and subsequent continuous self-assembly of silica/surfactant thin film mesophases. One of the crucial aspects of this process, in terms of the sol-gel chemistry, is to work under conditions where the condensation rate of the hydrophilic silicic acid precursors (Si-OH) is minimized. The idea is to avoid gelation that would kinetically trap the system at an intermediate non-equilibrium state. We want the structure to self-assemble then solidify, with the addition of a siloxane condensation catalyst or by heating, to form the desired mesostructured product. Operating at an acidic pH (pH = 2) minimizes the condensation rate of silanols to form siloxanes Si-O-SiIn addition, hydrogen bonding and electrostatic interactions between silanols and hydrophilic surfactant head groups can further reduce the condensation rate. These combined factors maintain the depositing film in a fluid state, even beyond the point where ethanol and water are largely evaporated. This allows the deposited film to be self-healing and enables the use of virtually any evaporation-driven process (spin-coating, inkjet printing, or aerosol processing) to create ordered nanostructured films, patterns, or particles.
Seeding and autocatalytic reduction of platinum salts in aqueous surfactant solution using ascorbic acid as the reductant leads to remarkable dendritic metal nanostructures. In micellar surfactant solutions, spherical dendritic metal nanostructures are obtained, and the smallest of these nanodendrites resemble assemblies of joined nanoparticles and the nanodendrites are single crystals. With liposomes as the template, dendritic platinum sheets in the form of thin circular disks or solid foam-like nanomaterials can be made. Synthetic control over the morphology of these nanodendrites, nanosheets, and nanostructured foams is realized by using a tin-porphyrin photocatalyst to conveniently and effectively produce a large initial population of catalytic growth centers. The concentration of seed particles determines the ultimate average size and uniformity of these novel two- and three-dimensional platinum nanostructures.
We report a novel packing mode specific to the cis unsaturated hydrocarbon chain in the title compound, a self-assembled layered double hydroxide-surfactant hybrid nanomaterial, and its influence on crystallite morphology and structure. The kink imposed by the cis double bond in oleate leads to partial overlap between chains on adjacent layers, with incomplete space filling, in contrast to the more usual (and more efficient) mono- and bilayer packings exhibited by the trans analogues. Incorporation of surfactant into the growing crystallite leads to a reversal of the usual LDH growth habit and results in crystallite shapes featuring ribbonlike sheets. The thermal decomposition behavior of the as-prepared organic/inorganic nanocomposites in air and N{sub 2} is described.
Fan, Hongyou F.; Yang, Kai; Boye, Daniel M.; Sigmon, Thomas; Malloy, Kevin J.; Xu, Huifang; López, Gabriel P.; Brinker, C.J.
We report the synthesis of a new nanocrystal (NC) mesophase through self-assembly of water-soluble NC micelles with soluble silica. The mesophase comprises gold nanocrystals arranged within a silica matrix in a face-centered cubic lattice with cell dimensions that are adjustable through control of the nanocrystal diameter and/or the alkane chain lengths of the primary alkanethiol stabilizing ligands or the surrounding secondary surfactants. Under kinetically controlled silica polymerization conditions, evaporation drives self-assembly of NC micelles into ordered NC/silica thin-film mesophases during spin coating. The intermediate NC micelles are water soluble and of interest for biolabeling. Initial experiments on a metal-insulator-metal capacitor fabricated with an ordered three-dimensional gold nanocrystal/silica array as the "insulator" demonstrated collective Coulomb blockade behavior below 100 kelvin and established the current-voltage scaling relationship for a well-defined three-dimensional array of Coulomb islands.
An increase in photocurrent has been observed at silicon electrodes coated with nanostructured porous silica films as compared to bare, unmodified silicon. Ultimately, to utilize this effect in devices such as sensors or microchip power supplies, the physical phenomena behind this observation need to be well characterized. To this end, Electrochemical Impedance Spectroscopy (EIS) was used to characterize the effect of surfactant-templated mesoporous silica films deposited onto silicon electrodes on the electrical properties of the electrode space-charge region in an aqueous electrolyte solution, as the electrical properties of this space-charge region are responsible for the photobehavior of semiconductor devices. A significant shift in apparent flat-band potential was observed for electrodes modified with the silica film when compared to bare electrodes; the reliability of this data is suspect, however, due to contributions from surface states to the overall capacitance of the system. To assist in the interpretation of this EIS data, a series of measurements at Pt electrodes was performed with the hope of decoupling electrode and film contributions from the EIS spectra. Surprisingly, the frequency-dependent impedance data for Pt electrodes coated with a surfactant-templated film was nearly identical to that observed for bare Pt electrodes, indicating that the mesoporous film had little effect on the transport of small electrolyte ions to the electrode surface. Pore-blocking agents (tetraalkylammonium salts) were not observed to inhibit this transport process. However, untemplated (non-porous) silica films dramatically increased film resistance, indicating that our EIS data for the Pt electrodes is reliable. Overall, our preliminary conclusion is that a shift in electrical properties in the space-charge region induced by the presence of a porous silica film is responsible for the increase in observed photocurrent.
This report summarizes the development of new biocompatible self-assembly procedures enabling the immobilization of genetically engineered cells in a compact, self-sustaining, remotely addressable sensor platform. We used evaporation induced self-assembly (EISA) to immobilize cells within periodic silica nanostructures, characterized by unimodal pore sizes and pore connectivity, that can be patterned using ink-jet printing or photo patterning. We constructed cell lines for the expression of fluorescent proteins and induced reporter protein expression in immobilized cells. We investigated the role of the abiotic/biotic interface during cell-mediated self-assembly of synthetic materials.
Surfactant-templated silica thin films are potentially important materials for applications such as chemical sensing. However, a serious limitation for their use in aqueous environments is their poor hydrolytic stability. One convenient method of increasing the resistance of mesoporous silica to water degradation is addition of alumina, either doped into the pore walls during material synthesis or grafted onto the pore surface of preformed mesophases. Here, we compare these two routes to Al-modified mesoporous silica with respect to their effectiveness in decreasing the solubility of thin mesoporous silicate films. Direct synthesis of templated silica films prepared with Al/Si = 1:50 was found to limit film degradation, as measured by changes in film thickness, to less than 15% at near-neutral pH over a 1 week period. In addition to suppressing film dissolution, addition of Al can also cause structural changes in silica films templated with the nonionic surfactant Brij 56 (C 16H 33(OCH 2CH 2) n∼10OH), including mesophase transformation, a decrease in accessible porosity, and an increase in structural disorder. The solubility behavior of films is also sensitive to their particular mesophase, with 3D phases (cubic, disordered) possessing less internal but more thickness stability than 2D phases (hexagonal), as determined with ellipsometric measurements. Finally, grafting of Al species onto the surface of surfactant-templated silica films also significantly increases aqueous stability, although to a lesser extent than the direct synthesis route.
Polyoxometalates (POMs) are ionic (usually anionic) metal -oxo clusters that are both functional entities for a variety of applications, as well as structural units that can be used as building blocks if reacted under appropriate conditions. This is a powerful combination in that functionality can be built into materials, or doped into matrices. Additionally, by assembling functional POMs in ordered materials, new collective behaviors may be realized. Further, the vast variety of POM geometries, compositions and charges that are achievable gives this system a high degree of tunability. Processing conditions to link together POMs to build materials offer another vector of control, thus providing infinite possibilities of materials that can he nano-engineered through POM building blocks. POM applications that can be built into POM-based materials include catalysis, electro-optic and electro-chromic, anti-viral, metal binding, and protein binding. We have begun to explore three approaches in developing this field of functional, nano-engineered POM-based materials; and this report summarizes the work carried out for these approaches to date. The three strategies are: (1) doping POMs into silica matrices using sol-gel science, (2) forming POM-surfactant arrays and metal-POM-surfactant arrays, (3) using aerosol-spray pyrolysis of the POM-surfactant arrays to superimpose hierarchical architecture by self-assembly during aerosol-processing. Doping POMs into silica matrices was successful, but the POMs were partially degraded upon attempts to remove the structure-directing templates. The POM-surfactant and metal-POM-surfactant arrays approach was highly successful and holds much promise as a novel approach to nano-engineering new materials from structural and functional POM building blocks, as well as forming metastable or unusual POM geometries that may not be obtained by other synthetic methods. The aerosol-assisted self assembly approach is in very preliminary state of investigation, but also shows promise in that structured materials were formed; where the structure was altered by aerosol processing. We will be seeking alternative funding to continue investigating the second synthetic strategy that we have begun to develop during this 1-year project.
Our overall goal is to understand and develop a novel light-driven approach to the controlled growth of unique metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. Photocatalyst molecules are pre-positioned at the nanoscale to control the location and morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and molecular templating are some of the methods used for nanoscale positioning of the photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition and the synthesis of the new nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and Sandia National Laboratories. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience concentrates on three thematic research areas: (1) the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the environment, and (3) the development and use of multi-scale, multi-phenomena theory and simulation. Our goals for FY03 have been to understand the role of photocatalysis in the synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under ambient conditions. The research is expected to lead to highly nanoengineered materials for catalysis mediated by platinum, palladium, and potentially other catalytically important metals. The nanostructures made also have potential applications in nanoelectronics, nanophotonics, and nanomagnetic systems. We also expect to develop a fundamental understanding of the uses and limitations of biomimetic photocatalysis as a means of producing metal and semiconductor nanostructures and nanomaterials. The work has already led to a relationship with InfraSUR LLC, a small business that is developing our photocatalytic metal reduction processes for environmental remediation. This work also contributes to science education at a predominantly Hispanic and Native American university.
This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.
Inorganic mesoporous thin-films are important for applications such as membranes, sensors, low-dielectric-constant insulators (so-called low κ dielectrics), and fluidic devices. Over the past five years, several research groups have demonstrated the efficacy of using evaporation accompanying conventional coating operations such as spin- and dip-coating as an efficient means of driving the self-assembly of homogeneous solutions into highly ordered, oriented, mesostructured films. Understanding such evaporation-induced self-assembly (EISA) processes is of interest for both fundamental and technological reasons. Here, we use spatially resolved 2D grazing incidence X-ray scattering in combination with optical interferometry during steady-state dipcoating of surfactant-templated silica thin-films to structurally and compositionally characterize the EISA process. We report the evolution of a hexagonal (p6 mm) thin-film mesophase from a homogeneous precursor solution and its further structural development during drying and calcination. Monte Carlo simulations of water/ethanol/surfactant bulk phase behavior are used to investigate the role of ethanol in the self-assembly process, and we propose a mechanism to explain the observed dilation in unit cell dimensions during solvent evaporation.
This project combined nanocomposite materials with microfabricated optical device structures for the development of microsensor arrays. For the nanocomposite materials we have designed, developed, and characterized self-assembling, organic/inorganic hybrid optical sensor materials that offer highly selective, sensitive, and reversible sensing capability with unique hierarchical nanoarchitecture. Lipid bilayers and micellar polydiacetylene provided selective optical response towards metal ions (Pb(II), Hg(II)), a lectin protein (Concanavalin A), temperature, and organic solvent vapor. These materials formed as composites in silica sol-gels to impart physical protection of the self-assembled structures, provide a means for thin film surface coatings, and allow facile transport of analytes. The microoptical devices were designed and prepared with two- and four-level diffraction gratings coupled with conformal gold coatings on fused silica. The structure created a number of light reflections that illuminated multiple spots along the silica surface. These points of illumination would act as the excitation light for the fluorescence response of the sensor materials. Finally, we demonstrate an integrated device using the two-level diffraction grating coupled with the polydiacetylene/silica material.
This project set out to scientifically-tailor ''smart'' interfacial films and 3-D composite nanostructures to exhibit photochromic responses to specific, highly-localized chemical and/or mechanical stimuli, and to integrate them into optical microsystems. The project involved the design of functionalized chromophoric self-assembled materials that possessed intense and environmentally-sensitive optical properties (absorbance, fluorescence) enabling their use as detectors of specific stimuli and transducers when interfaced with optical probes. The conjugated polymer polydiacetylene (PDA) proved to be the most promising material in many respects, although it had some drawbacks concerning reversibility. Throughout his work we used multi-task scanning probes (AFM, NSOM), offering simultaneous optical and interfacial force capabilities, to actuate and characterize the PDA with localized and specific interactions for detailed characterization of physical mechanisms and parameters. In addition to forming high quality mono-, bi-, and tri-layers of PDA via Langmuir-Blodgett deposition, we were successful in using the diacetylene monomer precursor as a surfactant that directed the self-assembly of an ordered, mesostructured inorganic host matrix. Remarkably, the diacetylene was polymerized in the matrix, thus providing a PDA-silica composite. The inorganic matrix serves as a perm-selective barrier to chemical and biological agents and provides structural support for improved material durability in microsystems. Our original goal was to use the composite films as a direct interface with microscale devices as optical elements (e.g., intracavity mirrors, diffraction gratings), taking advantage of the very high sensitivity of device performance to real-time dielectric changes in the films. However, our optical physics colleagues (M. Crawford and S. Kemme) were unsuccessful in these efforts, mainly due to the poor optical quality of the composite films.
This report summarizes the development of sensor particles for remote detection of trace chemical analytes over broad areas, e.g residual trinitrotoluene from buried landmines or other unexploded ordnance (UXO). We also describe the potential of the sensor particle approach for the detection of chemical warfare (CW) agents. The primary goal of this work has been the development of sensor particles that incorporate sample preconcentration, analyte molecular recognition, chemical signal amplification, and fluorescence signal transduction within a ''grain of sand''. Two approaches for particle-based chemical-to-fluorescence signal transduction are described: (1) enzyme-amplified immunoassays using biocompatible inorganic encapsulants, and (2) oxidative quenching of a unique fluorescent polymer by TNT.