Publications

Results 51–63 of 63
Skip to search filters

WEC-sim phase 1 validation testing-experimental setup and initial results

Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE

Bosma, Bret; Simmons, Asher; Lomonaco, Pedro; Ruehl, Kelley M.; Gunawan, Budi G.

In the wave energy industry, there is a need for open source numerical codes and publicly available experimental data, both of which are being addressed through the development of WEC-Sim by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL). WEC-Sim is an open source code used to model wave energy converters (WECs) when subject to incident waves. In order for the WEC-Sim code to be useful, code verification and physical model validation is necessary. This paper describes the wave tank testing for the 1:33 scale experiments of a Floating Oscillating Surge Wave Energy Converter (FOSWEC). The WEC-Sim experimental data set will help to advance the wave energy converter industry by providing a free, high-quality data set for researchers and developers. This paper describes the WEC-Sim open source wave energy converter simulation tool, experimental validation plan, and presents preliminary experimental results from the FOSWEC Phase 1 testing.

More Details

U.S. Department of Energy Reference Model Program RM1: Experimental Results

Hill, Craig H.; Neary, Vincent S.; Gunawan, Budi G.; Guala, Michele G.; Sotiropoulos, Fotis S.

The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM2) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.

More Details

Experimental Confirmation of Water Column Natural Resonance Migration in a BBDB Device

Bull, Diana L.; Gunawan, Budi G.; Holmes, Brian H.

Experiments were conducted with a Backward Bent Duct Buoy (BBDB) oscillating water column wave energy conversion device with a scaling factor of 50 at HMRC at University College Cork, Ireland. Results were compared to numerical performance models. This work experimentally verified the migration of the natural resonance location of the water column due to hydrodynamic coupling for a floating non- axisymmetric device without a power conversion chain PCC present. In addition, the experimental results verified the performance model with a PCC of the same non- axisymmetric device when both floating and grounded.

More Details

U.S. Department of Energy Reference Model Program RM2: Experimental Results

Hill, Craig H.; Neary, Vincent S.; Gunawan, Budi G.; Guala, Michele G.; Sotiropoulos, Fotis S.

The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN - SAFL) . Reference Model 2 (RM2) is a 1:15 geometric scale dual - rotor cross flow vertical axis device with counter - rotating rotors, each with a rotor diameter dT = 0.43m and rotor height, hT = 0.323 m. RM2 is a river turbine designed for a site modeled after a reach in the lower Mississippi River near Baton Rouge, Louisiana (Barone et al. 2014) . Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor and the midpoint for RM2 . Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2. 35m3s-1 , resulting in a hub height velocity of approximately Uhub = 1. 2 ms-1 and blade chord length Reynolds numbers of Rec = 6 .1x104. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing computational fluid dynamics (CFD) models and their ability to accurately simulate turbulent inflow environments, device performance metrics, and to reproduce wake velocity deficit, recovery and higher order turbulent statistics.

More Details

Tidal energy site resource assessment in the East River tidal strait, near Roosevelt Island, New York, New York

Renewable Energy

Gunawan, Budi G.; Neary, Vincent S.

This study demonstrates a site resource assessment to examine the temporal variation of the mean current, turbulence intensities, and power densities for a tidal energy site in the East River tidal strait. These variables were derived from two-months of acoustic Doppler velocimeter (ADV) measurements at the design hub height of the Verdant Power Gen5 hydrokinetic turbine. The study site is a tidal strait that exhibits semi-diurnal tidal current characteristics, with a mean horizontal current speed of 1.4 m s-1, and turbulence intensity of 15% at a reference mean current of 2 m s-1. Flood and ebb flow directions are nearly bi-directional, with higher current magnitude during flood tide, which skews the power production towards the flood tide period. The tidal hydrodynamics at the site are highly regular, as indicated by the tidal current time series that resembles a sinusoidal function. This study also shows that the theoretical force and power densities derived from the current measurements can significantly be influenced by the length of the time window used for averaging the current data. Furthermore, the theoretical power density at the site, derived from the current measurements, is one order of magnitude greater than that reported in the U.S. national resource assessment. As a result, this discrepancy highlights the importance of conducting site resource assessments based on measurements at the tidal energy converter device scale.

More Details
Results 51–63 of 63
Results 51–63 of 63