Radiographic diodes focus on an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the six-cavity radiographic integrated test stand (RITS-6) inductive voltage adder driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode–cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analysis of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below approximately few millimeters. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle behavior of SMP shots is made to lend credence to the inference. We report there is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.
The self-magnetic pinch (SMP) diode is a type of radiographic diode used to generate an intense electron beam for radiographic applications. At Sandia National Laboratories, SMP was the diode load for the six-cavity radiographic integrated test stand inductive voltage adder (IVA) driver operated in a magnetically insulated transmission line (MITL). The MITL contributes a flow current in addition to the current generated within the diode itself. Extensive experiments with a MITL of 40 Ω load impedance [T. J. Renk et al., Phys. Plasmas 29, 023105 (2022)] indicate that the additional flow current leads to results similar to what might be expected from a conventional high-voltage interface driver, where flow current is not present. However, when the MITL flow impedance was increased to 80 Ω, qualitatively different diode behavior was observed. This includes large retrapping waves suggestive of an initial coupling to low impedance as well as diode current decreasing with time even as the total current does not. A key observation is that the driver generates total current (flow + diode) consistent with the flow impedance of the MITL used. The case is made in this paper that the 80 Ω MITL experiments detailed here can only be understood when the IVA-MITL-SMP diode is considered as a total system. The constraint of fixed total current plus the relatively high flow impedance limits the ability of the diode (whether SMP or other type) to act as an independent load. An unexpected new result is that in tracking the behavior of the electron strike angle on the converter as a function of time, we observed that the conventional cIV x “Radiographic” radiation scaling (where x ∼ 2.2) begins to break down for voltages above 8 MV, and cubic scaling is required to recover accurate angle tracking.
Radiographic diodes focus an intense electron beam to a small spot size to minimize the source area of energetic photons for radiographic interrogation. The self-magnetic pinch (SMP) diode has been developed as such a source and operated as a load for the RITS-6 Inductive Voltage Adder (IVA) driver. While experiments support the generally accepted conclusion that a 1:1 aspect diode (cathode diameter equals anode-cathode gap) delivers optimum SMP performance, such experiments also show that reducing the cathode diameter, while reducing spot size, also results in reduced radiation dose, by as much as 50%, and degraded shot reproducibility. Analyzation of the effective electron impingement angle on the anode converter with time made possible by a newly developed dose-rate array diagnostic indicates that fast-developing oscillations of the angle are correlated with early termination of the radiation pulse on many of the smaller-diameter SMP shots. This behavior as a function of relative cathode size persists through experiments with output voltages and currents up to 11.5 MV and 225 kA, respectively, and with spot sizes below ~ few mm. Since simulations to date have not predicted such oscillatory behavior, considerable discussion of the angle-behavior of SMP shots is made to lend credence to the inference. There is clear anecdotal evidence that DC heating of the SMP diode region leads to stabilization of this oscillatory behavior. This is the first of two papers on the performance of the SMP diode on the RITS-6 accelerator.
The Saturn X-ray generator is a 2.5 megavolt, 10 megampere electrical driver at Sandia National Laboratories. Saturn has been in operation for more than 30 years. Work is underway to identify key areas of the machine, improvement of which would benefit operational efficiency and reproducibility of the system. Saturn is used to create high-dose, short-pulse intense ionizing radiation environments for testing electronic and mechanical systems. Saturn has 36 identical modules driving a common electron beam bremsstrahlung load. Each module utilizes a microsecond Marx generator, a megavolt gas switch, and untriggered water switches in a largely conventional pulse-forming system. Achieving predictable and reliable radiation exposure is critical for users of the facility. Saturn has endured decades of continual use with minimal opportunities for research, improvements, or significant preventive maintenance. Because of degradation in components and limited attention to electrical performance, the facility has declined both in the number of useful tests per year and their repeatability. The Saturn system resides in a cylindrical tank 33m in diameter, and stores 5.6 MJ at the nominal operating Marx charge voltage. The system today is essentially identical to that described by Bloomquist in 1987. [1] Advances in technology for large pulsed power systems affords opportunities to improve the performance and more efficiently utilize the energy stored. Increased efficiency can improve reliability and reduce maintenance. The goals for the Saturn improvement work are increased shot rate, reduced X-ray dose shot-To-shot dose fluctuation, and reduced required maintenance. Major redesign with alternate pulsed power technology is considered outside the scope of this effort. More X-ray dose, larger exposure area, and lower X-ray endpoint energy are also important considerations but also deemed outside the scope of the present project due to schedule and resource constraints. The first considerations, described here, are improving the present design with better components.
The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (∼1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.
We describe the study we have undertaken to evaluate the effect of component tolerances in obtaining a voltage output flat top for a linear transformer driver (LTD) cavity containing 3rd and 5th harmonic bricks [A. A. Kim et al., in Proc. IEEE Pulsed Power and Plasma Science PPPS2013 (San Francisco, California, USA, 2013), pp. 1354-1356.] and for 30 cavity voltage adder. Our goal was to define the necessary component value precision in order to obtain a voltage output flat top with no more than ±0.5% amplitude variation.