Publications

Results 26–49 of 49
Skip to search filters

Failure analysis of rutile sleeves in MC3080 lightning arrestor connectors

Watson, Chad S.; Kilgo, Alice C.; Ernest, Terry L.; Monroe, Saundra L.; Tuttle, Bruce T.; Olson, Walter R.

The purpose of this SAND Report is to document efforts in the extraction and failure analyses of sleeve-style Lightning Arrestor Connectors (LACs). Several MC3080 and MC3079 LACs were recovered from the field and tested as part of the Enhanced Surveillance Campaign. A portion of these LACs failed retesting. Terry Ernest (01733), the LAC Component Engineer, provided eleven MC3080 LACs for evaluation where four of the LACs failed IR/DCW and one failed FRB requirements. The extraction of rutile sleeves from failed LACs was required to determine the source of failure. Rutile sleeves associated with connector function failures were examined for cracks, debris as well as any other anomalies which could have caused the LAC to not function properly. Sleeves that failed FRB or that experienced high FRB exhibited high symmetry, smooth surface, long-flow amicon, and slightly over-sized inside diameter. LACs that failed DCW or IR requirements had rutile sleeves that exhibited breakdown tracks.

More Details

Dielectric and magnetic properties of FE- and Nb-doped CaCu3Ti4O12

Proposed for publication in Physical Review B.

Grubbs, Robert K.; Venturini, Eugene L.; Clem, Paul G.; Richardson, Jacob J.; Tuttle, Bruce T.; Samara, George A.

Detailed studies of the properties of ceramic CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) have clarified the physics of this interesting material and revealed several features not reported before. The dielectric relaxational properties of CCTO are explained in terms of a capacitive-layer model, as for an inhomogeneous semiconductor, consisting of semiconducting grains and insulating grain boundaries as also concluded by others. The kinetics of the main [low-temperature (T)] relaxation reveal that two different thermally activated processes in CCTO grains control the dynamics. A likely candidate defect responsible for the two processes is the oxygen vacancy which is a double donor. A higher-T relaxation is determined by grain boundary conduction. Both Nb and Fe doping lowered both the apparent dielectric constant {var_epsilon}{prime} and the dielectric loss, but increased Fe doping led to more dramatic effects. At 3 at.% Fe doping, the anomalous {var_epsilon}{prime}(T) response was removed, making the CCTO an intrinsic, very-low-loss dielectric. The intrinsic {var_epsilon}{prime}({approx}75) and its T dependence are measured and shown to be largely determined by a low-lying soft TO phonon. At low T, cubic CCTO transforms into an antiferromagnetic phase at T{sub N} = 25 K. T{sub N} is essentially independent of Nb doping (up to 4 at.%) and of hydrostatic pressure (up to {approx}7 kbar), but decreases significantly with Fe doping. Analysis of the high-T dependence of the magnetic susceptibility provided insight into the role of Fe as a dopant. Finally, an {var_epsilon}{prime}(T) anomaly associated with the onset of antiferromagnetic order has been discovered, providing evidence for coupling between the polarization and sublattice magnetization. The possible origin of this coupling is discussed.

More Details

Near net shape forming processes for chemically prepared zinc oxide varistors

Bell, Nelson S.; Lockwood, Steven J.; Voigt, James A.; Tuttle, Bruce T.

Chemically prepared zinc oxide powders are fabricated for the production of high aspect ratio varistor components. Colloidal processing in water was performed to reduce agglomerates to primary particles, form a high solids loading slurry, and prevent dopant migration. The milled and dispersed powder exhibited a viscoelastic to elastic behavioral transition at a volume loading of 43-46%. The origin of this transition was studied using acoustic spectroscopy, zeta potential measurements and oscillatory rheology. The phenomenon occurs due to a volume fraction solids dependent reduction in the zeta potential of the solid phase. It is postulated to result from divalent ion binding within the polyelectrolyte dispersant chain, and was mitigated using a polyethylene glycol plasticizing additive. Chemically prepared zinc oxide powders were processed for the production of high aspect ratio varistor components. Near net shape casting methods including slip casting and agarose gelcasting were evaluated for effectiveness in achieving a uniform green microstructure achieving density values near the theoretical maximum during sintering. The structure of the green parts was examined by mercury porisimetry. Agarose gelcasting produced green parts with low solids loading values and did not achieve high fired density. Isopressing the agarose cast parts after drying raised the fired density to greater than 95%, but the parts exhibited catastrophic shorting during electrical testing. Slip casting produced high green density parts, which exhibited high fired density values. The electrical characteristics of slip cast parts are comparable with dry pressed powder compacts. Alternative methods for near net shape forming of ceramic dispersions were investigated for use with the chemically prepared ZnO material. Recommendations for further investigation to achieve a viable production process are presented.

More Details

Chem-prep PZT95/5 for neutron generator applications : the effect of pore former type and density on the depoling behavior of chemically prepared PZT 95/5 ceramics

Yang, Pin Y.; Yang, Pin Y.; Moore, Roger H.; Lockwood, Steven J.; Tuttle, Bruce T.; Voigt, James A.; Scofield, Timothy W.

The hydrostatically induced ferroelectric(FE)-to-antiferroelectric(AFE) phase transformation for chemically prepared niobium modified PZT 95/5 ceramics was studied as a function of density and pore former type (Lucite or Avicel). Special attention was placed on the effect of different pore formers on the charge release behavior associated with the FE-to-AFE phase transformation. Within the same density range (7.26 g/cm3 to 7.44 g/cm3), results showed that ceramics prepared with Lucite pore former exhibit a higher bulk modulus and a sharper polarization release behavior than those prepared with Avicel. In addition, the average transformation pressure was 10.7% greater and the amount of polarization released was 2.1% higher for ceramics with Lucite pore former. The increased transformation pressure was attributed to the increase of bulk modulus associated with Lucite pore former. Data indicated that a minimum volumetric transformational strain of -0.42% was required to trigger the hydrostatically induced FE-to-AFE phase transformation. This work has important implications for increasing the high temperature charge output for neutron generator power supply units.

More Details

Development of integrated high value resistors on novel substrates

Proceedings of SPIE - The International Society for Optical Engineering

Tuttle, Bruce T.; Williams, David P.; Olson, Walter R.; Clem, Paul G.; King, Bruce; Renn, Michael

Development of next generation electronics for pulse discharge systems requires miniaturization and integration of high voltage, high value resistors (greater than 100 megohms) with novel substrate materials. These material advances are needed for improved reliability, robustness and performance. In this study, high sheet resistance inks of 1 megohm per square were evaluated to reduce overall electrical system volume. We investigated a deposition process that permits co-sintering of high-sheet-resistance inks with a variety of different material substrates. Our approach combines the direct write process of aerosol jetting with laser sintering and conventional thermal sintering processes. One advantage of aerosol jetting is that high quality, fine line depositions can be achieved on a wide variety of substrates. When combined with laser sintering, the aerosol jetting approach has the capability to deposit resistors at any location on a substrate and to additively trim the resistors to specific values. We have demonstrated a 400 times reduction in overall resistor volume compared to commercial chip resistors using the above process techniques. Resistors that exhibited this volumetric efficiency were fabricated by 850°C thermal processing on alumina substrates and by 0.1W laser sintering on Kapton substrates.

More Details

Combined x-ray/neutron Rietveld refinement of Ln-doped PZT perovskites

Rodriguez, Marko A.; Rodriguez, Marko A.; Boyle, Timothy J.; Tuttle, Bruce T.

Combined XRD/neutron Rietveld refinements were performed on PbZr{sub 0.30}Ti{sub 0.70}O{sub 3} powder samples doped with nominally 4% Ln (where Ln = Ce, Nd, Tb, Y, or Yb). Resulting refined structural parameters indicated that the lattice parameters and volume changes in the tetragonal perovskite unit cell were consistent with A and/or B-site doping of the structure. Ce doping is inconsistent with respect to its rather large atomic radius, but is understood in terms of its oxidation to the Ce{sup +4} oxidation state in the structure. Results of the B-site displacement values for the Ti/Zr site indicate that amphoteric doping of Ln cations in the structure results in superior properties for PLnZT materials.

More Details

Colloidal processing of chemically prepared zinc oxide varistors. Part 2, near net shape forming and fired electrical properties

Proposed for publication in the Journal of Materials Research.

Bell, Nelson S.; Bell, Nelson S.; Voigt, James A.; Tuttle, Bruce T.; Dimos, Duane B.

Chemically prepared zinc oxide powders were processed for the production of high aspect ratio varistor components (length/diameter >5). Near-net-shape casting methods including slip casting and agarose gelcasting were evaluated for effectiveness in achieving a uniform green microstructure that densifies to near theoretical values during sintering. The structure of the green parts was examined by mercury porisimetry. Agarose gelcasting produced green parts having low solids loading values and did not achieve high fired density. Isopressing the agarose cast parts after drying raised the fired density to greater than 95%, but the parts exhibited catastrophic shorting during electrical testing. Slip casting produced high green density parts, which exhibit high fired density values. The electrical characteristics of slip-cast parts are comparable with dry-pressed powder compacts.

More Details

Effects of Microstructural Variables on the Shock Wave Response of PZT 95/5

Setchell, Robert E.; Setchell, Robert E.; Tuttle, Bruce T.; Voigt, James A.

The particular lead zirconate/titanate composition PZT 95/5-2Nb was identified many years ago as a promising ferroelectric ceramic for use in shock-driven pulsed power supplies. The bulk density and the corresponding porous microstructure of this material can be varied by adding different types and quantities of organic pore formers prior to bisque firing and sintering. Early studies showed that the porous microstructure could have a significant effect on power supply performance, with only a relatively narrow range of densities providing acceptable shock wave response. However, relatively few studies were performed over the years to characterize the shock response of this material, yielding few insights on how microstructural features actually influence the constitutive mechanical, electrical, and phase-transition properties. The goal of the current work was to address these issues through comparative shock wave experiments on PZT 95/5-2Nb materials having different porous microstructures. A gas-gun facility was used to generate uniaxial-strain shock waves in test materials under carefully controlled impact conditions. Reverse-impact experiments were conducted to obtain basic Hugoniot data, and transmitted-wave experiments were conducted to examine both constitutive mechanical properties and shock-driven electrical currents. The present work benefited from a recent study in which a baseline material with a particular microstructure had been examined in detail. This study identified a complex mechanical behavior governed by anomalous compressibility and incomplete phase transformation at low shock amplitudes, and by a relatively slow yielding process at high shock amplitudes. Depoling currents are reduced at low shock stresses due to the incomplete transformation, and are reduced further in the presence of a strong electrical field. At high shock stresses, depoling currents are driven by a wave structure governed by the threshold for dynamic yielding. This wave structure is insensitive to the final wave amplitude, resulting in depoling currents that do not increase with shock amplitude for stresses above the yield threshold. In the present study, experiments were conducted under matched experimental conditions to directly compare with the behavior of the baseline material. Only subtle differences were observed in the mechanical and electrical shock responses of common-density materials having different porous microstructures, but large effects were observed when initial density was varied.

More Details

Robocast Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} Ceramic Monoliths and Composites

Journal of American Ceramic Society

Tuttle, Bruce T.; Smay, James E.; Cesarano, Joseph C.; Voigt, James A.; Scofield, Timothy W.; Olson, Walter R.

Robocasting, a computer controlled slurry deposition technique, was used to fabricate ceramic monoliths and composites of chemically prepared Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} (PZT 95/5) ceramics. Densities and electrical properties of the robocast samples were equivalent to those obtained for cold isostatically pressed (CIP) parts formed at 200 MPa. Robocast composites consisting of alternate layers of the following sintered densities: (93.9%--96.1%--93.9%), were fabricated using different levels of organic pore former additions. Modification from a single to a multiple material deposition robocaster was essential to the fabrication of composites that could withstand repeated cycles of saturated polarization switching under 30 kV/cm fields. Further, these composites withstood 500 MPa hydrostatic pressure induced poled ferroelectric (FE) to antiferroelectric (AFE) phase transformation during which strain differences on the order of 0.8% occurred between composite elements.

More Details

Monte Carlo simulation of ferroelectric domain structure: Electrostatic and elastic strain energy contributions

Ferroelectrics

Potter, Barrett G.; Tuttle, Bruce T.; Tikare, Veena T.

A lattice-Monte Carlo approach was developed to simulate ferroelectric domain behavior. The model utilizes a Hamiltonian for the total energy that includes electrostatic terms (involving dipole-dipole interactions, local polarization gradients, and applied electric field), and elastic strain energy. The contributions of these energy components to the domain structure and to the overall applied field response of the system were examined. In general, the model exhibited domain structure characteristics consistent with those observed in a tetragonally distorted ferroelectric. Good qualitative agreement between the appearance of simulated electrical hysteresis loops and those characteristic of real ferroelectric materials was found.

More Details

Raman study of lead zirconate titanate under uniaxial stress

Tallant, David T.; Simpson, Regina L.; Grazier, J.M.; Zeuch, David H.; Olson, Walter R.; Tuttle, Bruce T.

The authors used micro-Raman spectroscopy to monitor the ferroelectric (FE) to antiferroelectric (AFE) phase transition in PZT ceramic bars during the application of uniaxial stress. They designed and constructed a simple loading device, which can apply sufficient uniaxial force to transform reasonably large ceramic bars while being small enough to fit on the mechanical stage of the microscope used for Raman analysis. Raman spectra of individual grains in ceramic PZT bars were obtained as the stress on the bar was increased in increments. At the same time gauges attached to the PZT bar recorded axial and lateral strains induced by the applied stress. The Raman spectra were used to calculate an FE coordinate, which is related to the fraction of FE phase present. The authors present data showing changes in the FE coordinates of individual PZT grains and correlate these changes to stress-strain data, which plot the macroscopic evolution of the FE-to-AFE transformation. Their data indicates that the FE-to-AFE transformation does not occur simultaneously for all PZT grains but that grains react individually to local conditions.

More Details
Results 26–49 of 49
Results 26–49 of 49