The purpose of this protocol is to bring metal halide perovskite (MHP) modules to a repeatable and relevant state prior to making a performance measurement. Performance measurements are made before and after a stressor has been applied to the module to quantify the degree of loss resulting from the stressor. This procedure is intended to be carried out both before and after the accelerated test.
The Perovskite PV Accelerator for Commercial Technology (PACT) is an independent validation center for the evaluation of perovskite PV technologies and their bankability. The center is led by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL) and includes as part of its team Los Alamos National Laboratory (LANL), CFV Labs, Black and Veatch (B&V), and the Electric Power Research Institute (EPRI). The goals of the center are to: Develop and improve indoor and outdoor performance characterization methods, Develop and validate accelerated qualification testing for early failures (5-10 years), Research degradation and failure modes, Validate outdoor performance, and Provide bankability services to US perovskite PV (PSC) industry. The importance of data and data management to the success and outcomes of the PACT center is paramount. This report describes how data will be managed and protected by PACT and identifies important data management principles that will guide our approach.
Using a photovoltaic module where each of the 72 cells are monitored separately, we have measured the optical effects of sunlight hitting the module at different angles. As the angle of incidence increased to 60-70 degrees, we observed an increase in the nonuniformity of the light reaching the cells across the module area (up to 4% as measured by resulting cell current). The effect is hypothesized to be the result of a combination of two mechanisms: light trapping within the top sheet glass layer and reflection from the aluminum frame at the edge of the module. We confirm these effects with time-series measurements on split reference cells fielded outdoors, and with ray-tracing modeling to determine how this phenomenon may affect PV performance and module characterization.
Literature describes various methods for determining a series resistance for a photovoltaic device from measured IV curves. We investigate use of these techniques to estimate the series resistance parameter for a single diode equivalent circuit model. With simulated IV curves we demonstrate that the series resistance values obtained by these techniques differ systematically from the known series resistance parameter values used to generate the curves, indicating that these methods are not suitable for determining the series resistance parameter for the single diode model equation. We present an alternative method to determine the series resistance parameter jointly with the other parameters for the single diode model equation, and demonstrate the accuracy and reliability of this technique in the presence of measurement errors.
Photovoltaic (PV) module and system performance degradation is being measured by periodic flash testing of fielded PV modules at three sites. As of early 2018, results from modules fielded in New Mexico and Colorado are now available. These data indicate that module degradation varies significantly between module types and can also vary between modules of the same model. In addition, degradation rates for some module types appear to vary over time. Great care is made to control for stability and repeatability in the measurements over time, but there is still a +/-0.5% uncertainty in flash test stability. Therefore, it will take several more years for degradation rate results to be known with higher confidence.
Copper indium gallium (di)serenade (CIGS) photovoltaic cell technology has long been promoted as a cost-effective alternative to traditional PV modules based on crystalline silicon cells. However, adoption of CIGS is hindered by significant uncertainties regarding long-term reliability and performance stability, as well as a lack of accurate modeling tools to predict CIGS system performance. Sandia is conducting a multi-year study of fielded CIGS systems that range in age from 3-6 years and represent a cross-section of commercial manufacturing and packaging. Most of these arrays include modules that were thoroughly characterized prior to deployment. In this paper, we explore uncertainty in the long-term reliability and performance stability of CIGS modules by analyzing real world performance and degradation rates of these systems.
Angle of incidence response of a photovoltaic module describes its light gathering capability when incident sunlight is at an orientation other than normal to the module's surface. At low incident angles (i.e. close to normal), most modules have similar responses. However, at increasing incident angles, reflective losses dominate response and relative module performance becomes differentiated. Relative performance in this range is important for understanding the potential power output of utility - scale ph otovoltaic systems. In this report, we document the relative angle of incidence response of four utility - grade panels to each other and to four First Solar modules. We found that response was nearly identical between all modules up to an incident angle of ~55°. At higher angles, differences of up to 5% were observed. A module from Yingli was the best performing commercial module while a First Solar test module with a non - production anti - reflective coating was the best overall performer. This page left blank